13. In each of the following formulae, every letter stands for the measurement of a length. By considering the dimensions implied by the formulae, write down, for each case, whether the formula could be for a length, an area, a volume or none of these. The first one has been done for you.

10. In each of the following formulae, every letter stands for the measurement of a length. By considering the dimensions implied by the formulae, write down, for each case, whether the formula could be for a length, an area, a volume or none of these.

The first one has been done for you.

10. In each of the following formulae, every letter stands for the measurement of a length. By considering the dimensions implied by the formulae, write down, for each case, whether the formulae could be for a length, an area, a volume or none of these.

The first one has been done for you.

[2]

11. In each of the following formulae, every letter stands for the measurement of a length. By considering the dimensions implied by each formula, write down, for each case, whether the formula could be for a length, an area, a volume or none of these.

The first one has been done for you.

12. In each of the following formulae, every letter stands for the measurement of a length. By considering the dimensions implied by the formulae, write down, for each case, whether the formulae could be for a length, an area, a volume or none of these.

The first one has been done for you.

	Formula could be for:
$6r^2h + 4r^3$	volume
$6r^2 + 4dh$	
6(r+4d)h	
$6r^2 + 4dh + 3h$	
6r + 4d + 3h	

[2]

Ę