22. The graph of $y = 16 - x^2$ is shown below for values of x from 0 to 3.

Use the trapezium rule, with the four ordinates x = 0, x = 1, x = 2 and x = 3, to estimate the area of the region bounded by the curve, the *x*-axis, the *y*-axis and the line x = 3.

23. The graph of $y = 4-x^2$ is shown below for values of x from -2 to 2.

21. The graph below shows the speed of a train, in m/s, over a period of 60 seconds starting at time t = 0 seconds.

[3]

(a) Estimate the acceleration of the train at time t = 25 seconds.

Time t (seconds)	0	10	20	30
Speed (m/s)	0	7	25	30

(b) The table below gives the speed of the train between t = 0 to t = 30.

(i) Use the trapezium rule with values taken from the table to estimate the distance, in kilometres, travelled by the train between t = 0 and t = 30 seconds.

	•••••••
	[0]
	[3]
(ii) Hence estimate the total distance travelled during the 60 seconds.	
and any one of the of seconds.	
	[1]
	[1]