E
 wjec cbac

The nth term

A sequence is a number pattern that follows a rule. We can find any term in a sequence using the nth term rule and knowing the position of the term we want within the sequence i.e $1^{\text {st }}(n=1), 2^{\text {nd }}(n=2), 3^{\text {rd }}(n=3) \ldots 50^{0^{\text {h }}}(n=50)$.

Finding the nth term rule - Linear sequences

Linear sequences The difference between the terms of a linear sequence is always the same

Example Find the nth term for the following sequences
 a) $3,6,9,12,15 \ldots$ | n | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| term | 3 | 6 | 9 | 12 | 15 |

The difference is +3 .

Multiplying n (the position) by 3 gives the term. nth term $=3 \times n$

nth term $=3 n$

d) $7,10,13,16,19$.

The difference is +3 (as in the sequence above).
The nth term rule starts with $3 n$.
Comparing the sequence with $3 n$ we see each term has moved up four places (+4). nth term $=3 n+4$
b) $5,10,15,20,25 \ldots$

n	1	2	3	4	5
term	5	10	14		20
+5	25				

The difference is +5 .

Multiplying n (the position) by 5 gives the term. nth term $=5 \times n$
nth term $=5 n$
e) $2,7,12,17,22$.

The difference is +5 (as in the sequence above).
The nth term rule starts with $5 n$.
Comparing the sequence with $5 n$ we see each term has moved down three places (-3). nth term $=5 n-3$
c) $-2,-4,-6,-8,-10 \ldots$

n	1	2	3	4	5
term	-2	-4	-6	-8	-10

The difference is -2

Multiplying n (the position) by -2 gives the term. nth term $=-2 \times n$

$$
n \text {th term }=-2 n
$$

f) $4,2,0,-2,-4 \ldots$

n	1	2	3	-2	$4-2$
term	4	2	0	-2	-4

The difference is -2 (as in the sequence above). The nth term rule starts with $-2 n$. Comparing the sequence with $-2 n$ we see each term has moved up six places (+6) from $-2 n$. nth term $=-2 n+6$

Using the nth term rule

Finding terms within a linear sequence		Determining if a term is in a sequence	
1) Find the first three terms of the	2) Find the $100^{\text {th }}$ term of the sequence with nth term $=-4 n+8$.	Determine if 254 is a term in the sequence nth term $=3 n-2$.	
sequence with nth term $=3 n-4$. If $n=1$ then $3 \times 1-4=\mathbf{- 1}$			Write and solve an equation using the term and the nth term rule. If n (the term's
If $n=\mathbf{2}$ then $3 \times 2-4=\mathbf{2}$	If $n=100$ then $-4 \times 100+8=\mathbf{- 3 9 2}$	$3 n-2=254$	position) is a whole number, then the term
If $n=3$ then $3 \times 3-4=\mathbf{5}$	$100^{\text {th }}$ term $=-392$	$3 n=256$	d
$-1,2,5, \ldots$		$n=\frac{256}{3}$	therefore 254 cannot be in the sequence

Finding terms within a quadratic sequence

1) Find the first three terms of the sequence with nth term $=n^{2}+5$.
If $n=1$ then $1^{2}+5=\mathbf{6}$
If $n=\mathbf{2}$ then $\mathbf{2}^{2}+5=\mathbf{9}$
If $n=\mathbf{3}$ then $\mathbf{3}^{2}+5=\mathbf{1 4}$

Check that you can:

recognise simple number patterns
find the next term in a number pattern using the simple term-to-term rule

$$
\text { e.g. } \underbrace{7,}_{+4+4} \underbrace{11,}_{+4} \underbrace{15,}_{+4} \underbrace{19}_{+4}
$$

draw the next diagram in a pattern
substitute values into expressions.

Finding the nth term rule - Quadratic sequences

Quadratic sequence The nth term rule for a quadratic sequence will contain n^{2} and this will be the highest power of n.

The first difference between each term of a quadratic sequence changes (although it will follow a pattern) so we the look at the second difference, which stays the same.
If the second difference is $2 a$ then the sequence starts with $a n^{2}$.
E.g. if the second difference is 2 , the sequence starts with n^{2}. If the second difference is 4 the sequence starts with $2 n^{2}$

Example Find the nth term for the following sequences.

				2) Draw a table and compare n^{2} with the sequence.									
				n			1		2	3	4	5	
				n^{2}					4	9	16	25	
				term					6	11	18	27	
1) The second difference is +2 so the sequence starts with n^{2}				3) Each term has moved up two places (+2) from n^{2}. nth term $=n^{2}+2$									
b) $-1,8,23,44,71 \ldots$				2) Draw a table and compare $3 n^{2}$ with the sequence.									
							1	2		3	4	5	
				$3 n^{2}$			3	12		27	48	75	
1) The second difference is +6 so the sequence starts with $3 n^{2}$.				term			1	8		23	44	71	
) Each term has moved down four places (-4) from $3 n^{2}$.									
c) 1			4 43				3) The difference is a linear sequence $(b n+c)$. Solve it the same way as the method on the left.						
									1	2	3	4	5
						Linear			8	9	10	11	12
1) The second difference is +4 so the sequence starts with $2 n^{2}$. 2) Draw a table and compare $2 n^{2}$ with the sequence (subtract $2 n^{2}$ from the term).													
n	1	2	3	$4{ }^{4} 5$		5) Compare the linear term with $+1 n$. The term has moved +7 places from $+1 n$.							
$2 n^{2}$	2	8	18	32	50								
term	10	17	28	43	62	The linear term is $n+7$. The final quadratic sequence is $2 n^{2}+n+7$.							
term - $2 n^{2}$	8	9	10	11	12								

[^0]\[

$$
\begin{aligned}
& \text { If } n=1 \text { then } 2 \times 1^{2}-1=\mathbf{1} \\
& \text { If } n=\mathbf{2} \text { then } 2 \times \mathbf{2}^{2}-4=\mathbf{7} \\
& \text { If } n=\mathbf{3} \text { then } 2 \times \mathbf{3}^{2}-1=\mathbf{1 7}
\end{aligned}
$$
\]

Don't forget to check your nth term rule by substituting the n values back into your rule in order to get the terms.

Remember that n is the position of the term within the sequence so it's this 'position' that we substitute into our rule in order to find the term.

[^0]: 2) Find the first three terms of the sequence with nth term $=2 n^{2}-1$
