

The *n*th term

A sequence is a number pattern that follows a rule. We can find any term in a sequence using the nth term rule and knowing the position of the term we want within the sequence i.e 1^{st} (n = 1), 2^{nd} (n = 2), 3^{rd} (n = 3)... 50^{th} (n = 50).

Finding the nth term rule – Linear sequences

Linear sequences The difference between the terms of a linear sequence is always the same.

Example Find the *n*th term for the following sequences.

The difference is +3

Multiplying n (the position) by 3 gives the term. nth term = $3 \times n$

$$n$$
th term = $3n$

d) 7, 10, 13, 16, 19...

The difference is +3 (as in the sequence above).

The nth term rule starts with 3n. Comparing the sequence with 3n we see each term has moved up four places (+4).

nth term = 3n + 4

b) 5, 10, 15, 20, 25...

The difference is +5.

Multiplying n (the position) by 5 gives the term. nth term = $5 \times n$

$$n$$
th term = $5n$

e) 2, 7, 12, 17, 22...

The difference is +5 (as in the sequence above).

The nth term rule starts with 5n. Comparing the sequence with 5n we see each term has moved down three places (-3).

$$n$$
th term = $5n - 3$

c) -2, -4, -6, -8, -10...

The difference is -2. Multiplying n (the position) by -2 gives the term. nth term = $-2 \times n$

$$n$$
th term = $-2n$

f) 4, 2, 0, -2, -4...

The difference is -2 (as in the sequence above). The nth term rule starts with -2n. Comparing the sequence with -2n we see each term has moved up six places (+6) from -2n.

$$n$$
th term = $-2n + 6$

Using the *n*th term rule

Finding terms within a linear sequence

1) Find the first three terms of the sequence with nth term = 3n - 4.

If
$$n = 1$$
 then $3 \times 1 - 4 = -1$

If
$$n = 2$$
 then $3 \times 2 - 4 = 2$

If n = 3 then $3 \times 3 - 4 = 5$

2) Find the 100^{th} term of the sequence with nth term

$$= -4n + 8.$$

If
$$n = 100$$
 then $-4 \times 100 + 8 = -392$

$$100^{th}$$
 term = -392

Determining if a term is in a sequence

Determine if 254 is a term in the sequence nth term = 3n - 2.

Write and solve an equation using the term and the nth term rule. If n (the term's position) is a whole number, then the term will be part of the sequence.

 $n = \frac{256}{3} = 85 \frac{1}{3}$ therefore 254 cannot be in the sequence

Finding terms within a quadratic sequence

1) Find the first three terms of the sequence with *n*th term = $n^2 + 5$.

If
$$n = 1$$
 then $1^2 + 5 = 6$

If
$$n = 2$$
 then $2^2 + 5 = 9$

2) Find the first three terms of the sequence with *n*th term = $2n^2 - 1$.

If
$$n = 1$$
 then $2 \times 1^2 - 1 = 1$

If n = 3 then $3^2 + 5 = 14$

If
$$n = 2$$
 then $2 \times 2^2 - 4 = 7$

If
$$n = 3$$
 then $2 \times 3^2 - 1 = 17$

1, 7, 17, ...

Check that you can:

- recognise simple number patterns
- find the next term in a number pattern using the simple term-to-term rule

- draw the next diagram in a pattern
- substitute values into expressions.

Finding the *n*th term rule – Quadratic sequences

Quadratic sequence The nth term rule for a quadratic sequence will contain n^2 and this will be the highest power of n.

The first difference between each term of a quadratic sequence changes (although it will follow a pattern) so we the look at the second difference, which stays the same.

If the second difference is 2a then the sequence starts with an^2 .

E.g. if the second difference is 2, the sequence starts with n^2 . If the second difference is 4, the sequence starts with $2n^2$

Example Find the *n*th term for the following sequences.

1) The second difference is +2 so the sequence starts with n^2 .

2) Draw a table and compare n^2 with the sequence.

n	1	2	3	4	5
n^2	1	4	9	16	25
term	3	6	11	18	27

3) Each term has moved up two places (+2) from n^2 . nth term = $n^2 + 2$

b) -1, 8, 23, 44, 71...

+9 +15 +21 +27 +6 +6 +6

1) The second difference is +6 so the sequence starts with $3n^2$.

2) Draw a table and compare $3n^2$ with the sequence.

n	1	2	3	4	5
$3n^2$	3	12	27	48	75
term	-1	8	23	44	71

3) Each term has moved down four places (-4) from $3n^2$.

$$n$$
th term = $3n^2 - 4$

- 1) The second difference is +4 so the sequence starts with $2n^2$.
- 2) Draw a table and compare $2n^2$ with the sequence (subtract $2n^2$ from the term).

n	1	2	3	4	5
$2n^2$	2	8	18	32	50
term	10	17	28	43	62
term $-2n^2$	8	9	10	11	12

3) The difference is a linear sequence (bn+c). Solve it the same way as the method on the left.

7	n	1	2	3	4	5		
- 1	Linear term	8	9	10	11	12		
_	+1 +1 +1 +1							

- 4) The difference is +1. This is b. Multiply n by +1.
- 5) Compare the linear term with +1n. The term has moved +7 places from +1n. c = +7.

The linear term is n + 7.

The final quadratic sequence is $2n^2 + n + 7$.

Don't forget to check your nth term rule by substituting the n values back into your rule in order to get the terms.

Remember that n is the position of the term within the sequence so it's this 'position' that we substitute into our rule in order to find the term.