\square
 Number patterns and sequences

wfec cbac

A sequence is a number pattern that follows a rule. We can find any term in a sequence using the nth term rule and knowing the position of the term we want within the sequence, i.e. $1^{\text {st }}(n=1), 2^{\text {nd }}(n=2), 3^{\text {rd }}(n=3) \ldots 50^{\text {th }}(n=50)$.
The term-to-term rule

4	7	70	73	76

This list of numbers is called a sequence. A sequence is a set of numbers or symbols which follows a pattern or rule.
Each member of the sequence is called a term

Example

Look again at the same number sequence. In this sequence, to go from one term to the next you add 3 to the previous term. 'Adding 3' to the previous term is the term-to-term rule for this sequence. You can use the term-to-term rule to continue the sequence. Here, $16+3=19$. So, the next term is 19

Example

Here, the term-to-term rule is 'subtract 6' from the previous term.

The term-to-term rule can involve lots of different operations including adding subtracting, multiplying or dividing.

Beware - you should check more than one pair of terms to be sure of the term-to-term rule!

Example

For the term-to-term rule, the number being added increases by 1 each time

Here, $17+5=22$. So, the next term is 22 .

The nth term rule

The term-to-term rule is useful for listing the terms in a sequence in order. But it could mean listing a lot of terms if you require the term in a particular position, such as the $200^{\prime \prime \prime}$ term.
The nth term rule takes you straight to the term in any position, without having to list all the previous terms. n is the position number
You can substitute a value for n to find the term in any position. The nth term rule is also known as the position-to-term rule.

Example

We start with the rule of a sequence, e.g. $3 n+1$
The n here denotes the position in the sequence. For example, if we substitute 1 in as n, this will give us the value of the first number in the sequence.
We can generate the sequence using this rule. For the first 5 terms of the sequence, we substitute the numbers 1 to 5 into the rule.
$3(1)+1=4$
$3(2)+1=7$
$3(3)+1=10$
$3(4)+1=13$
$3(5)+1=16$

So, the sequence looks like this: $4,7,10,13,16$... This sequence can be continued by adding 3 to the previous number.

If we wanted to find the $30^{\text {th }}$ term of this sequence, we don't need to list all 30 terms by manually adding 3 to the previous term until we have 30 terms. We can just substitute in 30 in place of n in the rule of the sequence.
$3(30)+1=91$
The $30^{\text {th }}$ term is 91 .

We would do the same to find the $100^{\text {th }}$ term $3(100)+1=301$

Check that you can:

- recognise simple patterns of numbers and pictures add, subtract, multiply and divide positive and negative whole numbers
- remember your times tables.

Picture sequences

Sometimes a sequence is the result of drawing patterns which follow rules. You can use the sequence of patterns to write a sequence of numbers. Then, you can consider the term-to-term rule

Example

For the sequence of patterns shown below:

Pattern 1
Pattern 2

a) Draw pattern 4
b) Write the number of tiles in each pattern as a sequence c) Write down the rule for finding the next term in the sequence.

Answer

a)

b) $1,5,9,13$
c) Add four squares, (one at each corner) to the previous pattern

REMEMBER! When moving between positive and negative numbers, it might help to use a number line.

