Area and perimeter, dimensions and volume

Understanding the difference between perimeter, area and volume. Calculating the perimeter, area and volume of different 2-D and 3-D shapes.

Perimeter

This measures the distance around the outline of a shape.

Perimeter is measured in units as $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$.

Converting between measurements of length

Area

Area This measures the amount of space within a 2-D shape

Area of a Rectangle

Area of Rectangle $=$ length \times width

Area of a Triangle

Area of triangle $=\frac{1}{2} \times$ base \times height

Area of a Parallelogram

Area of a parallelogram $=$ base \times height

Area of a Trapezium

Area of a trapezium $=\frac{1}{2}(a+b) \times$ height
Area is measured in units ${ }^{2}$
e.g. $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$

Converting between measurements of area

Circumference of a circle

The perimeter of a circle is called the circumference.
Using C to represent circumference, and d to represent diameter, we write the formula for the circumference of a circle as:
$C=\pi d$
Since the diameter is twice as long as the radius ($d=2 r$), we can also write the formula for the circumference:

$$
C=2 \pi r
$$

We can use π in our calculators, or we can use an estimate of $3 \cdot 14$

Area of a Circle

Using A to represent area and r to represent radius, the formula for the area of a circle is:
$A=\pi r^{2}$

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \times 3.14 \times 10 \\
& =62.8 \mathrm{~cm} \\
A & =\pi r^{2} \\
& =3.14 \times 10^{2} \\
& =3.14 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of compound shapes

To calculate the area of a compound shape, we need to cut the shape up into its different parts. The area of the shape then comes from adding the areas of these different parts.

Example

The shape on the left can be cut into two rectangles in two different ways. We can either make a vertical cut or a horizontal cut.

To calculate the area using the vertical cut we can label the two shapes A and B. Calculate any missing sides, then calculate the area

```
Area \(\mathrm{A}=1 \times 2\)
\(=2 \mathrm{~cm}^{2}\)
\[
\begin{aligned}
& =A+B \\
& =2+40
\end{aligned}
\]
\[
=2+40
\]
```

$$
\begin{aligned}
\text { Area } B & =4 \times 10 \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
=42 \mathrm{~cm}^{2}
$$

Check that you can:

recognize 2-D shapes and their properties recognize 3-D shapes and their properties draw nets of 3-D shapes
substitute values into a formula understand the relationship between units of the metric system.

REMEMBER!

Don't forget to use the information you are given to
caiculate the lengths of any missing sides.

Area and perimeter, dimensions and volume
Understanding the difference between perimeter, area and volume. Calculating the perimeter, area and volume of different 2-D and 3-D shapes.

Check that you can:

- calculate the area of different 2-D shapes.

Surface Area This is the total area of every surface (face) of a 3-D shape.

t is useful to consider the net of the 3-D shape, to find the area of each ace, in order to calculate the total surface area.

REMEMBER!

Take care to include every side of the shape when calculating surface area.

Draw a sketch of the sides you are using for your calculation, and draw on the dimensions you need.

Volume This measures the amount of space within a 3D shape

Volume of a Cuboid

Volume of a cuboid $=$ length \times width \times height

$$
\begin{aligned}
& =8 \times 5 \times 3 \\
& =120 \mathrm{~cm}^{2}
\end{aligned}
$$

Volume of a Prism

Volume of a prism $=$ area of the cross-section \times length

$$
\begin{aligned}
& =200 \times 57 \\
& =11400 \mathrm{~mm}^{3}
\end{aligned}
$$

Volume of a Cylinder

Volume of a cylinder $=$ area of the cross-section \times length

Volume is measured in units ${ }^{3}$ e.g. $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$

Converting between measurements of volume

E.g. Convert $5.5 \mathrm{~mm}^{3}$ to cm^{3}

$$
\begin{aligned}
5.5 \times 100^{3} & =5.5 \times 1000000 \\
& =5500000 \mathrm{~cm}^{3}
\end{aligned}
$$

Remember to check the measurements are in the same units before adding or multiplying to find perimeter, area or volume.

Dimensions and formulae

We can decide if a formula is for a perimeter, area or volume by looking at the dimensions involved
We know that:
perimeter is a measurement of length $(\mathrm{L}): 1$ dimension
area is given by a length \times length $\left(L^{2}\right): 2$ dimensions
volume is given by a length \times length \times length $\left(L^{3}\right): 3$ dimensions.

Deciding if a formula is length, area or volume formula

Example 1:

Perimeter of a rectangle $=2 \times$ length $+2 \times$ width

$$
=2 l+2 w
$$

Remember, numbers have no dimension.
So, the expression $2 l+2 w$ is simply a length and has one dimension.

Example 2:

Volume of a triangle $=\frac{1}{2} \times$ base \times height
Here we have number \times length \times length, so the expression $\frac{1}{2} b h$ is an area and has two dimensions.

Example 3:

Volume of a cylinder $=\pi r^{2} h$
Here we have a number, (π), multiplying an area, $\left(r^{2}\right)$, and a length (h). Now number \times area \times length is the same as number \times length and so is a volume. The expression $\pi r^{2} h$ represents a volume and so has three dimensions

We don't need to recognise the formula to decide if it is used to calculate a length, an area or a volume. We just need to work out how many dimensions it has

Example 4:

So, we have area + area, which means this is an area formula

Mixed dimensions

We can add a length to a length or an area to an area but it's not possible to mix dimensions. We can't add a length to an area or an area to a volume, therefore a formula will never contain a mixture of dimensions.

Example 5:
length \times length length \times length \times length

