# Area and perimeter, dimensions and volume

Understanding the difference between perimeter, area and volume. Calculating the perimeter, area and volume of different 2-D and 3-D shapes.

# **Perimeter**

This measures the distance around the outline of a shape.



Perimeter is measured in units as mm, cm, m...

# Converting between measurements of length



#### **Area**

Area This measures the amount of space within a 2-D shape.

# Area of a Rectangle

 $Area of Rectangle = length \times width$ 



# **Area of a Triangle**

Area of triangle =  $\frac{1}{2} \times base \times height$ 

# Area of a Parallelogram

Area of a parallelogram =  $base \times height$ 

# **Area of a Trapezium**

Area of a trapezium =  $\frac{1}{2}$  (a + b) × height

Area is measured in units<sup>2</sup> e.g. mm<sup>2</sup>, cm<sup>2</sup>, m<sup>2</sup> ...



5.6m

 $5.6 \times 4$ 

 $= 22.4 \,\mathrm{m}^2$ 

# Converting between measurements of area

E.g. Convert 480 mm<sup>2</sup> to cm<sup>2</sup>.

$$480 \div 10^2 = 480 \div 100$$
$$= 4.8 \,\mathrm{cm}^2$$



# Circumference of a circle

The perimeter of a circle is called the circumference.

Using *c* to represent circumference, and *d* to represent diameter, we write the formula for the circumference of a circle as:  $C = \pi d$ 

Since the diameter is twice as long as the radius (d = 2r), we can also write the formula for the circumference:

 $C = 2\pi r$ 

We can use  $\pi$  in our calculators, or we can use an estimate of 3.14.

# Area of a Circle

Using *A* to represent area and *r* to represent radius, the formula for the area of a circle is:

$$A = \pi r^2$$



 $C = 2\pi r$  $= 2 \times 3.14 \times 10$  $= 62.8 \,\mathrm{cm}$ 

 $A = \pi r^2$  $= 3.14 \times 10^{2}$  $= 3.14 \, \text{cm}^2$ 

# Area of compound shapes

To calculate the area of a compound shape, we need to cut the shape up into its different parts. The area of the shape then comes from adding the areas of these different parts.

# Example

The shape on the left can be cut into two rectangles in two different ways. We can either make a vertical cut or a horizontal cut.



To calculate the area using the vertical cut we can label the two shapes A and B. Calculate any missing sides, then calculate the area.

Area 
$$A = 1 \times 2$$
  
=  $2 \text{ cm}^2$ 

Area B = 
$$4 \times 10$$
  
=  $40 \text{ cm}^2$ 





# Check that you can:

- recognize 2-D shapes and their properties
- recognize 3-D shapes and their properties
- draw nets of 3-D shapes
- substitute values into a formula
- understand the relationship between units of the metric system.

# **REMEMBER!**

Don't forget to use the information you are given to calculate the lengths of any missing sides.



# Area and perimeter, dimensions and volume

Understanding the difference between perimeter, area and volume. Calculating the perimeter, area and volume of different 2-D and 3-D shapes.

# **Check that you can:**

• calculate the area of different 2-D shapes.

Surface Area This is the total area of every surface (face) of a 3-D shape.



It is useful to consider the net of the 3-D shape, to find the area of each face, in order to calculate the total surface area.



# **REMEMBER!**

- Take care to include every side of the shape when calculating surface area.
- Draw a sketch of the sides you are using for your calculation, and draw on the dimensions you need.

**Volume** This measures the amount of space within a 3D shape.

### Volume of a Cuboid

Volume of a cuboid = length  $\times$  width  $\times$  height

 $= 8 \times 5 \times 3$  $= 120 \,\mathrm{cm}^2$ 

# 8cm 3cm 5cm

## Volume of a Prism

 $\textit{Volume of a prism} = \textit{area of the cross-section} \times \textit{length}$ 

 $= 200 \times 57$ = 11400 mm<sup>3</sup>



### Volume of a Cylinder

*Volume of a cylinder* = area of the cross-section  $\times$  length

$$= \pi r^2 \times 1$$

$$= 3.14 \times 2^2 \times 5$$

$$= 62.8 \text{ cm}^2$$

$$2 \text{ cm}$$

Volume is measured in units<sup>3</sup> e.g. mm<sup>3</sup>, cm<sup>3</sup>, m<sup>3</sup> ...

#### Converting between measurements of volume

E.g. Convert 5.5 mm<sup>3</sup> to cm<sup>3</sup>.

$$5.5 \times 100^{3} = 5.5 \times 1000000$$

$$= 5500000 \text{ cm}^{3}$$

$$mm^{3} \times 10^{3} \times 100^{3} \times 1000^{3} \times 1000^{3}$$

$$\times 1000^{3} \times 1000^{3}$$

$$\times 1000^{3} \times 1000^{3}$$

**Remember** to check the measurements are in the same units before adding or multiplying to find perimeter, area or volume.

#### **Dimensions and formulae**

We can decide if a formula is for a perimeter, area or volume by looking at the dimensions involved.

We know that:

- **perimeter** is a measurement of length (L): 1 dimension
- area is given by a length x length (L2): 2 dimensions
- volume is given by a length x length x length (L³): 3 dimensions.

# Deciding if a formula is length, area or volume formula

#### Example 1:

Perimeter of a rectangle =  $2 \times \text{length} + 2 \times \text{width}$ = 2l + 2w

Remember, numbers have no dimension. So, the expression 2l + 2w is simply a length and has one dimension.

#### Example 2:

Volume of a triangle =  $\frac{1}{2}$  × base × height

Here we have number  $\times$  length, so the expression  $\frac{1}{2}$  bh is an area and has two dimensions.

## Example 3:

Volume of a cylinder =  $\pi r^2 h$ 

Here we have a number,  $(\pi)$ , multiplying an area,  $(r^2)$ , and a length, (h). Now number  $\times$  area  $\times$  length is the same as number  $\times$  length<sup>3</sup> and so is a volume. The expression  $\pi r^2 h$  represents a volume and so has three dimensions.

We don't need to recognise the formula to decide if it is used to calculate a length, an area or a volume. We just need to work out how many dimensions it has.

# Example 4:

 $d^2 + hr$ 

# **Mixed dimensions**

We can add a length to a length or an area to an area but it's not possible to mix dimensions. We can't add a length to an area or an area to a volume, therefore a formula will never contain a mixture of dimensions.

 $6rh + 5h^2r$ 

length  $\times$  length  $\times$  length  $\times$  length  $\times$  length So, we have area + volume which means this is not a formula for length, area or volume (none of these).