Area and perimeter, dimensions and volume

Building upon knowledge of circumference and area of a circle to consider arcs, sectors and segments. Calculating volume and surface area of more complex 3-D shapes.

Check that you can:

- calculate the area of more simple 2-D and 3-D shapes calculate the circumference and area of a circle.

Length of an arc of a circle

A fraction of a circle, like this one, is called a sector of a circle. The curved line is called an arc of a circle. If we were looking at a full circle this curved line would be the circumference.

This sector is a fraction of a whole circle. If the angle at the centre is 43° and the angle at the centre of a circle is 360°, then the fraction of the circle is $\frac{43}{360^{\circ}}$
To calculate an arc length, we simply need to calculate the relevant fraction of the circumference.

The formula for arc length is: Arc length $=\frac{\text { sector angle }}{360^{\circ}} \times \pi d$

Example

The arc length of this sector, given a radius of $5 \mathrm{~cm}(d=2 r)$ is:

$$
\begin{aligned}
\text { Arc length } & =\frac{43}{360} \times \pi \times 10 \\
& =3.75 \mathrm{~cm}(\text { to } 2 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

Area of a sector of a circle

We can work out the area of the sector in a similar manner, knowing that the sector is a fraction of the whole circle. If the sector is $\frac{43}{360}$ of a circle, the area of this sector is $\frac{43}{360}$ of the area of a full circle.

The formula for the area of a sector is: Sector Area $=\frac{\text { sector angle }}{360^{\circ}} \times \pi r^{2}$.

Example

The area of this sector, given a radius of 5 cm is

$$
\begin{aligned}
\text { Sector Area } & =\frac{43}{360} \times \pi \times 5^{2} \\
& \left.=9.38 \mathrm{~cm}^{2} \text { (to } 2 \text { d.p. }\right)
\end{aligned}
$$

Volume and surface area of a sphere or cone

Example 1
Calculate the volume and surface area or a sphere with a radius of 5 cm .
Answer

$$
\begin{aligned}
\text { Volume } & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times \pi \times 5^{3} \\
& =523.6 \mathrm{~cm}^{3} \text { to } 1 . \mathrm{d} . \mathrm{p}
\end{aligned}
$$

Surface area $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times \pi \times 5^{2} \\
& =314 \mathrm{~cm}^{2} \text { to nearest } \mathrm{cm}
\end{aligned}
$$

Example 2

A solid cone is shown on the right. Calculate its volume and total surface area. Give your answers as multiples of π.

Answer

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \pi \times 5^{2} \times 12 \\
& =100 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Total surface area $=$ curved surface + area of the base

$$
\begin{aligned}
& =\pi r l+\pi r^{2} \\
& =\pi \times 5 \times 13+\pi \times 5^{2}=90 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Volume of a Pyramid

The volume of any pyramid is given by the formula:
Volume of a pyramid $=\frac{1}{3} \times$ area of base \times perpendicular

Example

Calculate the volume of this rectangular-based pyramid.

6 cm
Volume of a pyramid $=\frac{1}{3} \times$ area of base \times perpendicular height

$$
\begin{aligned}
& =\frac{1}{3} \times(6 \times 4) \times 7 \\
& =56 \mathrm{~cm}^{3}
\end{aligned}
$$

REMEMBER
 You can leave your answer in terms of π like in example 2.

