SIMILAR SHAPES

Calculating missing lengths

Check that you can:

- recognise and work with ratios
- perform division with whole numbers and decimal numbers
rearrange equations to find missing values.
Using the scale factor for the enlargement gives a method for calculating missing lengths.

Example

Triangles $A B C$ and $P Q R$ are similar. Calculate the lengths of $P R$ and $B C$.

Answer

We are given the lengths of the corresponding sides $A B$ and $P Q$. This means that the scale factor for the enlargement is $\frac{10}{4}=2 \cdot 5$.

To calculate the length $P R$, we need to multiply the corresponding side by $2 \cdot 5$, as triangle $P Q R$ is the larger triangle.

Length of $P R=3.2 \times 2.5=8 \mathrm{~cm}$.
To calculate the length $B C$, we need to divide the corresponding side by $2 \cdot 5$, as triangle $A B C$ is the smaller triangle.

Length of $B C=4.5 \div 2.5=1.8 \mathrm{~cm}$

Another method is to use the ratios between the corresponding sides.
This can be written as:

$$
\frac{P Q}{A B}=\frac{P R}{A C}=\frac{Q R}{B C} \text { or } \frac{A B}{P Q}=\frac{A C}{P R}=\frac{B C}{Q R}
$$

Fill in the values you know and rearrange this to find the missing value. It is easiest to use fractions where the value you are asked to find is in the numerator (top) of the fraction.

In this example, we have:

$$
\frac{10}{4}=\frac{P R}{3 \cdot 2} \text { and } \frac{4}{10}=\frac{B C}{4 \cdot 5}
$$

Although the two methods described Although the two methods described calculate missing lengths in similar shapes, other ratios could be used.

For example:
$\frac{3 \cdot 2}{4}=\frac{P R}{10}$
Length of $P R=\frac{3 \cdot 2}{4} \times 10$

$$
=8 \mathrm{~cm}
$$

We have used three different calculations to find the length of $P R_{i}$ but each calculation simplifies to $10 \times 3 \cdot 2 \div 4$, but with the order of operation changed

Using similar shapes to find the perimeter
Example
The two shapes below are similar. The perimeter of the smaller shape is 36 cm . Calculate the perimeter of the larger shape.

Answer

8 cm

We do not need to know all the dimensions of the small shape since the two shapes are similar.

The scale factor for the enlargement is $\frac{14}{8}=1.75$.
Perimeter of large shape $=36 \times 1.75$
$=63 \mathrm{~cm}$.
Or we could use
$\frac{\text { Perimeter of large shape }}{36}=\frac{14}{8}$
Perimeter of large shape $=36 \times \frac{14}{8}$
$=63 \mathrm{~cm}$

REMEMBER!
Use the information you know about the shapes' measurements to
determine the scale factor between them. You can always find the scale factor between similar shapes if you are given the lengths of two corresponding sides.

