$x \div$ Drawing, recognising and using the graphs of \sin , \cos and tan.

Check that you can:

- solve equations to find the unknown variable
- use the trigonometric and inverse function buttons on your calculator.

Graph
 Here is the graph of $y=\sin x$ for the values $-360^{\circ} \leq x \leq 360^{\circ}$

$$
\text { Here is the graph of } y=\cos x \text { for the values }-360^{\circ} \leq x \leq 360^{\circ} \text {. }
$$

$$
\text { Here is the graph of } y=\tan x \text { for the values }-360^{\circ} \leq x \leq 360^{\circ} \text {. }
$$

Key features

- The graph makes one complete 'wave' in 360°. This means that the graph repeats itself every 360°. This is referred to as the period of the graph.
- It goes through the origin $(0,0)$.
- The maximum value is $\mathbf{1}$ and minimum is $\mathbf{- 1}$ so we can say that $-1 \leq \sin x \leq 1$.
- The graph makes one complete 'wave' in 360°. This means that the graph repeats itself every 360°. Therefore,
the period of the graph is again $\mathbf{3 6 0}$.
- It does not go through the origin $(0,0)$.
- It crosses the y axis at $(0,1)$.
- The maximum value is $\mathbf{1}$ and minimum is $\mathbf{- 1}$, so we can say that $-1 \leq \cos x \leq 1$.
- The shape is the same as $y=\sin x$ but it has been transformed (moved left 90°).
- The curve is symmetrical about the y-axis.
- The graph makes one complete 'wave' in 180°. This means that the graph repeats itself every 180°. Therefore, the period of the graph is $\mathbf{1 8 0}^{\circ}$.
- It goes through the origin $(0,0)$.
- The shape is not similar to either the sin graph or the cos graph.
- There are some values that are undefined, i.e. values of $\tan x$ that will appear as an error on any calculator. There will be a break in the graph at these values, at $x= \pm 90^{\circ}, \pm 270^{\circ}, \ldots$. The imaginary vertical lines at these values of x are called asymptotes - they are imaginary lines that the graph of $y=\tan x$ gets close to, but does not touch.
- There is no maximum or minimum value, so $-\infty \leq \tan x \leq \infty$.

Transformations of trigonometric graphs

When transforming graphs, remember the following rules:
$y=f(x)$ denotes the original function.
$y=f(x)+h$ moves the graph upwards by h units.
$y=f(x)-h$ moves the graph downwards by h units.
$y=f(x+h)$ moves the graph to the left by h units.
$y=f(x-h)$ moves the graph to the right by h units.
$y=f(x-h)$ moves the graph to the right by h units.
$y=f(a x)$ denotes a horizontal stretch from the y-axis by a scale factor of $\frac{1}{a}$, the reciprocal
of a.
$y=a f(x)$ denotes a vertical stretch from the x-axis by a scale factor of a.
These rules can be applied to trigonometric graphs.

REMEMBER!

When finding solutions to any equation, you can substitute back in to check your work.

Solving equations using trigonometric graphs

Example

Use the graph of $y=\sin x$ for the values $-360^{\circ} \leq x \leq 360^{\circ}$ to solve the equation $\sin x=0 \cdot 5$.

Answer

$\sin x=0 \cdot 5$, where the curve and the blue line intersect. Solutions for this part of the graph are shown on the graph (by the green arrows) they are: $-330^{\circ},-210^{\circ}, 30^{\circ}, 150^{\circ}$.

We are not always able to identify all values accurately by looking at the graphs.
We can find one solution using a calculator and then use the symmetry of the graph to find any other solutions.

