Trigonometric graphs

Drawing, recognising and using the graphs of sin, cos and tan.

Check that you can:

- solve equations to find the unknown variable
- use the trigonometric and inverse function buttons on your calculator.

Graph

Transformations of trigonometric graphs

When transforming graphs, remember the following rules:

y = f(x) denotes the original function.

y = f(x) + h moves the graph upwards by h units.

y = f(x) - h moves the graph downwards by h units.

y = f(x + h) moves the graph to the left by h units.

y = f(x - h) moves the graph to the right by *h* units.

y = f(ax) denotes a horizontal stretch from the *y*-axis by a scale factor of $\frac{1}{2}$, the reciprocal of a.

y = af(x) denotes a vertical stretch from the x-axis by a scale factor of a.

These rules can be applied to trigonometric graphs.

REMEMBER!

When finding solutions to any equation, you can substitute back in to check your work.

Solving equations using trigonometric graphs Example

Use the graph of $y = \sin x$ for the values $-360^{\circ} \le x \le 360^{\circ}$ to solve the equation $\sin x = 0 \cdot 5$.

Answer

 $\sin x = 0.5$, where the curve and the blue line intersect. Solutions for this part of the graph are shown on the graph (by the green arrows) they are: -330°, -210°, 30°, 150°.

We are not always able to identify all values accurately by looking at the graphs. We can find one solution using a calculator and then use the symmetry of the graph to find any other solutions.

