+ - Non-linear graphs: transformations

$\mathbf{x} \div$ Applying the transformations to graphs of $f(x)$ and understanding how they change.

TRANSFORMING GRAPHS

$f(x)$ stands for 'a function of x '. Generally, $y=f(x)$.
For example, the equation $y=3 x+8$ can also be written as $f(x)=3 x+8$.
Letters other than f can also be used, with g and h being the most common alternatives. For example, $y=x^{2}+2 x+6$ can be written as $g(x)=x^{2}+2 x+6$.
You need to be able to draw a transformed graph and recognise how the original graph has been transformed.
Example 1: Below are the graphs of $y=f(x)$ and $y=f(x)+2$.
The shape is the same, but the position is different. The original graph has moved up the y-axis by 2 units.

Example 2: Below are the graphs of $y=f(x)$ and $y=f(x)-3$.
The shape is the same, but the position is different. The original graph has moved down the y-axis by 3 units.

The transformation $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{a}$ moves the original graph $\mathrm{y}=f(x)$ upwards by \boldsymbol{a} units. The transformation $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{a}$ moves the original graph $\mathrm{y}=f(x)$ downwards by \boldsymbol{a} units.

Example 3: Below are the graphs of $y=f(x)$ and $y=f(x+2)$. The shape is the same, but the position is different. The original graph has moved to the left by 2 units. You can see that what used to happen at $x=0$ now happens at $x=-2$.

Example 4: Below are the graphs of $y=f(x)$ and $y=f(x-3)$. The shape is the same, but the position is different. The original graph has moved to the right by 3 units. What used to happen at $x=0$ now happens at $x=3$.

The transformation $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{a})$ moves the original graph of $y=f(x)$ to the left by \boldsymbol{a} units. The transformation $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{a})$ moves the original graph of $y=f(x)$ to the right by \boldsymbol{a} units.

Check that you can:

- recognise and draw non-linear graphs.

Example 5: Below are the graphs of $y=f(x)$ and $y=2 f(x)$. Both the shape and the position are similar. The original graph has stretched parallel to the y-axis (vertically) by a scale factor of 2 .

Example 6: Below are the graphs of $y=f(x)$ and $y=f(2 x)$. The transformed graph is a similar shape to the original graph, but it has been stretched horizontally by a scale factor of $\frac{1}{2}$.

The transformation of $y=k f(x)$ stretches the original graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ by a scale factor of \boldsymbol{k} parallel to the \boldsymbol{y}-axis.
The transformation of $y=f(k x)$ stretches the original graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ by a scale factor of $\frac{1}{k}$ parallel to the x-axis.

Example 7: Below are the graphs of $y=f(x)$ and $y=-f(x)$. The shape is similar, but the position is different. The original graph has been reflected in the x-axis.

Example 8: Below are the graphs of $y=f(x)$ and $y=f(-x)$. The shape is similar, but the position is different. The original graph has been reflected in the y-axis.

The transformation of $y=-f(x)$ is a reflection of the original graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ in the x-axis.
The transformation of $y=f(-x)$ is a reflection of the original graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ in the y-axis.

[^0]
TRANSFORMING KNOWN FUNCTIONS

We need to be able to transform known functions.
For example, $y=x^{2}$ is a known function and looks like the red curve below.
If we consider $y=x^{2}$ to be $y=f(x)$, then $y=x^{2}+4$ is $y=f(x)+4$.
Therefore, $y=x^{2}$ is moved 4 units upwards (blue curve).

We can apply this approach to similar transformations, for example:
a. $y=(x-3)^{2}$ is $y=f(x-3)$.

Therefore, $y=f(x)$ is moved 3 units to the right.
b. $y=3 x^{2}$ is $y=3 f(x)$.

Therefore, $y=x^{2}$ is stretched parallel to the y-axis by a scale factor of 3 .
c. $y=5 x^{2}$ is $y=f(5 x)$.

Therefore, $y=x^{2}$ is stretched parallel to the x-axis by a scale factor of $\frac{1}{5}$.
Here, the x values have been multiplied by $\frac{1}{5}$.
d. $y=-x^{2}$ is $y=-f(x)$.

Therefore, $y=x^{2}$ is reflected in the x-axis.
e. $y=(-x)^{2}$ is $y=f(-x)$.

Therefore, $y=x^{2}$ is reflected in the y-axis. Notice that this is exactly the same as the original because , $y=x^{2}$ is symmetrical about the y-axis.

+ - Non-linear graphs: transformations

$x \div$ How to draw and identify transformations of known functions.

THE EFFECT OF TRANSFORMATION ON THE COORDINATES OF A POINT ON THE ORIGINAL GRAPH (x, y).

\checkmark For $y=f(x)+a$, the x coordinate stays the same and a is added to the y coordinate of each point, e.g. $(x, y+a)$.

- For $y=f(x)-a$, the x coordinate stays the same and a is subtracted from the y coordinate of each point, e.g. $(x, y-a)$.

For $y=f(x+a), a$ is subtracted from the x coordinate of each point and the y coordinate stays the same, e.g. $(x-a, y)$.
For $y=f(x-a), a$ is added to the x coordinate of each point and the y coordinate stays the same, e.g. $(x+a, y)$.
For $y=k f(x)$, the x coordinate stays the same and the y coordinate of each point is multiplied by k, e.g. $(x, k y)$.

- For $y=f(k x)$, the x coordinate of each point is multiplied by $\frac{1}{k}$ and the y coordinate stays the same, e.g. $\left(\frac{x}{k}, y\right)$.
- For $y=-f(x)$, the x coordinate stays the same and the y coordinate of each point is multiplied by -1, e.g. $(x-y)$.
- For $y=f(-x)$, the x coordinate of each point is multiplied by -1 and the y coordinate stays the same, e.g. $(-x, y)$.

Below are some examples. Look closely at these graphs, taking particular notice of the coordinates shown. Here you can see $y=f(x)$ in red and $y=f(2 x)$ in blue:

HINTS FOR IDENTIFYING TRANSFORMATIONS

To identify transformations, you should look at the transformed graph and ask yourself the following questions:

- Is the transformed graph exactly the same shape as the original graph but in a different position? If yes, it must be $y=f(x)+a$ or $y=f(x)-a$.
- Are the points where the curve intersects an axis the same? If they intersect the x-axis at the same points, it must be $y=k f(x)$; if they intersect the y-axis at the same points, it must be $y=f(k x)$.
- Is it a reflection in the x-axis? If yes, then it is $y=-f(x)$.
- Is it a reflection in the y-axis? If yes, then it is $y=f(-x)$.

REMEMBER!

Use the guidance above as a checklist to help you identify transformations.

[^0]: REMEMBER!
 Take care to note if we are adding or subtracting from $f(x)$ or adding or subtracting from x. Take care to note if we are multiplying $f(x)$ by a factor or multiplying x by a factor.

