CHANGING THE SUBJECT OF A FORMULA

The subject of a formula should stand alone on one side of the formula.
For example, the subject of the formula $y=m x+c$ is y.
To make x the subject of a formula, the formula should be rearranged so that x stands alone on one side of the formula: $x=$

The process of changing the subject of a formula is very similar to that of solving equations using the balancing method.

Example 1:

Make w the subject of the following formula: $f=w+9 m$
If we want w on its own, then $9 m$ must be removed from the right-hand side. Remember, we must do the same to both sides of the formula in order to keep them balanced.

$$
\begin{aligned}
& f=w+9 m \\
& -9 m \quad-9 m \\
& f-9 m=w
\end{aligned}
$$

This can also be written as:

$$
w=f-9 m
$$

Example 2:

Make a the subject of the following formula: $c=4 a+b$
If we want a on its own, then b must be removed from the right-hand side. To keep the sides balanced, we must subtract b from each side of the formula.

$$
\begin{gathered}
c=4 a+b \\
-b \quad-b \\
c-b=4 a
\end{gathered}
$$

The second step is to remove the 4 from the right-hand side. We do this by dividing both sides by 4

$$
\begin{gathered}
c-b=4 a \\
\div 4 \quad \div 4 \\
\frac{c-b}{4}=a
\end{gathered}
$$

which can be also written as:

$$
a=\frac{c-b}{4}
$$

Example 3:
Make q the subject of the following formula: $t=p q^{2} r$
The first step is to remove the p and r from the right-hand side. We do this by dividing both sides by $p r$.

$$
\frac{t}{p r}=q^{2}
$$

The next step is to take the square root of both sides.

$$
\sqrt{\frac{t}{p r}}=q
$$

Example 4:

Make e the subject of the following formula: $d=\sqrt{3 e-5}$
First, remove the root by squaring both sides.

$$
d^{2}=3 e-5
$$

Then, we add 5 to both sides

$$
d^{2}+5=3 e
$$

Finally, divide both sides by 3 .

$$
\frac{d^{2}+5}{3}=e
$$

Example 5:

Make s the subject of the following formula:

$$
\begin{array}{lr}
\text { First, expand the brackets. } & 4 r=5 t+ \\
\text { Then, subtract } 5 t \text { from both sides. } & 4 r-5 t=10 s \\
\text { Finally, divide both sides by } 10 . & \\
& \frac{4 r-5 t}{10}=s
\end{array}
$$

$$
4 r=5(t+2 s)
$$

REMEMBER!

You must do the same to both sides of the formula in order to keep them balanced.

