Topic G4: Key idea 1 Igneous and sedimentary processes in concentrating natural resources

Key definitions

Ore body	A natural concentration of economically valuable metallic minerals, e.g. copper, gold and tin.
Gangue	The low value, waste mineral portion of an ore, e.g. quartz, calcite and pyrite.
Resource	A valuable natural economic deposit.
Reserve	The economically valuable proportion of a resource that can be extracted using current technology.
Grade	The percentage concentration of valuable minerals.

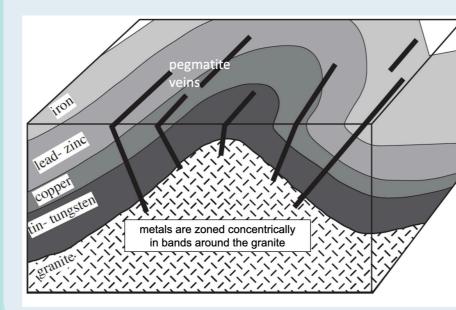
Sedimentary associations

The processes of weathering/erosion, transport and deposition leads to concentration of natural resources.

- **Residual deposits** deep chemical weathering removes soluble rock leading to the surface concentration of insoluble residues, e.g. bauxite.
- Precipitated:
- **BIFs** Precambrian atmosphere and ocean was oxygen deficient. Ferrous iron (Fe²⁺) is oxidised to insoluble ferric iron (Fe³⁺) by photosynthetic bacteria, which is precipitated in layers (banded iron formation).

Evaporites – shallow seawater bodies evaporate to precipitate salts, e.g. halite and gypsum.

• Placer deposits - concentration by gravity sorting of valuable, hard, dense, stable minerals, in lower flow regimes of moving water during sediment transport, e.g. gold.


Igneous ore associations

Valuable elements are poorly distributed in the crust and require natural processes to concentrate them to economically viable levels if they are to be exploited.

- Cumulate deposits, e.g. iron chromite ores
- Massive sulphide ores, e.g. black smokers
- Hydrothermal ores, e.g. porphyry copper

Hydrothermal metallic deposits

- These are associated with granite intrusions at convergent plate boundaries.
- Hydrothermal fluids (copper-rich) rise from the top of magma chambers to be intruded into country rock as mineral veins.
- Fluids chemically alter the country rock to form concentric alteration zones around the granite according to temperature.
- Pegmatite veins from highly volatile enriched fluids forming very coarse crystals of valuable rare elements, e.g. tin and lithium.

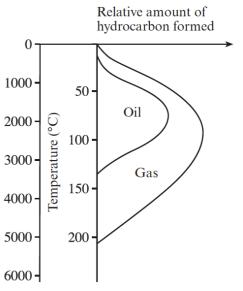
Hydrocarbons: oil and natural gas

Oil and gas result from the thermal alteration of buried organic material under specific depth conditions (temperature/pressure).

Depth (m)

Coal

Coal forming environments – an increase in coal rank (% carbon/volatiles) results in peat, lignite, bituminous and anthracite.


China clay

Felspars in granite break down by chemical weathering (hydrolysis) to clay – kaolinite.

Bulk minerals

Sand and gravel – important bulk minerals for aggregates in the construction industry. Deposition in a range of environments: river, river terrace, glacial/fluvioglacial and beach.

