Confidence intervals

Confidence intervals are a useful way to capture variation around point estimators. A confidence interval gives the range of values that we would expect our point estimator to be in, for a certain percentage of the time.

Consider a 95% confidence interval for μ. This means that if we calculated a large number of confidence intervals, we would expect 95% of them to contain μ, the population mean.

This is not the same as saying that our confidence interval has a 95% chance of containing the population mean. Our confidence interval either contains the population mean or it does not contain it. There is no probability associated with that (other than 0 or 1). We just do not know unless we know the population mean!

To calculate a confidence interval for the mean of a Normal distribution with known variance, use the formula:

$$
\mathrm{CI}=\bar{x} \pm z \sqrt{\frac{\sigma^{2}}{n}}
$$

Example

Bill is a long-jumper. He completes 10 jumps with the following results (measured in metres):

$$
\begin{aligned}
& 6 \cdot 21,6 \cdot 33,6 \cdot 02,6 \cdot 11,6 \cdot 13, \\
& 6 \cdot 40,6 \cdot 51,6 \cdot 29,6 \cdot 16,6 \cdot 44 .
\end{aligned}
$$

Assume the distances are a random sample from a Normal distribution with mean μ and standard deviation $0 \cdot 1$ metres. Calculate a 95% CI for μ.

$$
\begin{aligned}
& \bar{x}=6 \cdot 26 \\
& \mathrm{CI}=6 \cdot 26 \pm 1 \cdot 96 \sqrt{\frac{0 \cdot 1^{2}}{10}}=[6 \cdot 198,6 \cdot 322]
\end{aligned}
$$

If the variance is unknown and the sample is small, use the unbiased estimator for population variance, s^{2}, and the Student's t-distribution with $n-1$ degrees of freedom.

$$
\mathrm{CI}=\bar{x} \pm t \sqrt{\frac{s^{2}}{n}}
$$

Example

Ian is a discus thrower. He throws the discus 10 times with the following results (measured in metres):

$$
\begin{aligned}
& 25 \cdot 3,23 \cdot 8,24 \cdot 7,24 \cdot 9,23 \cdot 7 \\
& 25 \cdot 6,24 \cdot 6,24 \cdot 0,25 \cdot 3,24 \cdot 1
\end{aligned}
$$

You may assume that the distances (in metres) are Normally distributed with mean μ and variance σ^{2}. Calculate a 95\% CI for μ.

$$
\begin{aligned}
& \bar{x}=24 \cdot 6 \quad s^{2}=0 \cdot 46(\text { See KO 5.1) } \\
& \mathrm{CI}=24 \cdot 6 \pm 2 \cdot 262 \sqrt{\frac{0 \cdot 46}{10}}=[24 \cdot 115,25 \cdot 085]
\end{aligned}
$$

If the variance is unknown and the sample is large, use the unbiased estimator for population variance, s^{2}. (See KO 5.1 for formula for s^{2}).

$$
\mathrm{CI}=\bar{x} \pm z \sqrt{\frac{s^{2}}{n}}
$$

To calculate a confidence interval for the difference between two means from Normal distributions with known variance, use the formula:

$$
\mathrm{CI}=\bar{x}-\bar{y} \pm z \sqrt{\frac{\sigma_{x}^{2}}{n_{x}}+\frac{\sigma_{y}^{2}}{n_{y}}}
$$

The confidence interval for a proportion or probability

Example

In order to estimate the proportion, p, of a certain population who are bilingual, a random sample of 1200 members of the population are questioned. It is found that 498 of them are bilingual. Calculate a 90% CI for the proportion of the population who are bilingual.
$\hat{p}=\frac{498}{1200}=0.415$
$\mathrm{CI}=0.415 \pm 1.645 \sqrt{\frac{0.415 \times 0.585}{1200}}=[0.392,0.438]$
when n is large is given by:

$$
\mathrm{CI}=p \pm z \sqrt{\frac{p(1-p)}{n}}
$$

$2 \cdot 262$ is from the Student's t-distribution with 9 degrees of freedom.

