A linear combination of independent Normally distributed random variables has a Normal distribution.

$$
\begin{aligned}
& \text { If } X \sim \mathrm{~N}\left(\mu_{1}, \sigma_{1}^{2}\right) \text { and } Y \sim \mathrm{~N}\left(\mu_{2^{\prime}}, \sigma_{2}^{2}\right) \\
& \text { and } W=a X+b Y \text { then } \\
& W \sim \mathrm{~N}\left(a \mu_{1}+b \mu_{2}, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right)
\end{aligned}
$$

Example

The random variable X is Normally distributed with mean 8 and standard deviation 3 .

The independent random variable Y is Normally distributed with mean 15 and standard deviation 2.

Evaluate $P(Y-2 X<0)$

Solution

$$
\begin{aligned}
& X \sim \mathrm{~N}\left(8,3^{2}\right) \text { and } Y \sim \mathrm{~N}\left(15,2^{2}\right) \\
& \mathrm{E}(Y-2 X)=\mathrm{E}(Y)-2 \mathrm{E}(X) \\
&=15-2 \times 8=-1 \\
& \operatorname{Var}(Y-2 X)=\operatorname{Var}(Y)+(-2)^{2} \operatorname{Var}(X) \\
&=4+2^{2} \times 9=40
\end{aligned}
$$

You can use your calculator to find $P(Y-2 X<0)$ using the Normal CD function on your calculator. Use:

$$
\begin{gathered}
\text { Lower: }-9 \times 10^{99} \\
\text { Upper: } 0 \\
\sigma: \sqrt{40} \\
\mu:-1 \\
\mathrm{P}(Y-2 X<0)=0.56282
\end{gathered}
$$

Central Limit Theorem (CLT)

The Central Limit Theorem (CLT)

states that the distribution of the mean of a large random sample from any distribution with known mean, μ, and variance, σ^{2}, is approximately Normally distributed.

Example

$$
X \sim \mathrm{~N}\left(8,3^{2}\right) \text { and } Y \sim \mathrm{~N}\left(15,2^{2}\right)
$$

Suppose Steve collects three observations of X and sums them, and Lucy collects two observations of Y and sums them. What is the probability that the difference between the two sums will be positive?

We want the distribution of $X_{1}+X_{2}+X_{3}-Y_{1}-Y_{2}$
Note: this is different to the distribution of $3 X-2 Y$
So, $X_{1}+X_{2}+X_{3}-Y_{1}-Y_{2}$ has mean $8+8+8-15-15=-6$ And variance $9+9+9+4+4=35$

Again, you can use your calculator to find P(difference between the two sums >0), using the Normal CD function on your calculator, with:

Lower: 0
Upper: 9×10^{99}
$\sigma: \sqrt{35}$
$\mu:-6$
$P($ difference between the two sums $>0)=0 \cdot 15525$

The distribution of the mean of a random sample from a Normal distribution with known mean and variance is also Normal.

Example

A manufacturer produces two types of mobile phone cases: type A that weigh less than 32 g , and type B that weigh more than 32 g . The masses, X, in grams, of 8 mobile phone cases are collected from an unlabelled bag containing either all type A or all type B:

$$
\begin{aligned}
& 32 \cdot 0,31 \cdot 3,34 \cdot 5,32 \cdot 8 \\
& 32 \cdot 1,32 \cdot 5,30 \cdot 9,31 \cdot 2
\end{aligned}
$$

You may assume that this is a random sample from a Normal population with standard deviation 0.5 g .

Find the probability that the unlabelled bag contains type A mobile phone cases.

Solution

$\bar{x}=32 \cdot 1625$
Sample standard deviation $=\sqrt{\frac{0 \cdot 5^{2}}{8}}$
Again you can use your calculator to find the probability, with:

$$
\begin{aligned}
& \text { Lower: }-9 \times 10^{99} \\
& \text { Upper: } 32 \\
& \sigma: 0 \cdot 17677669 \\
& \mu: 32 \cdot 1625
\end{aligned}
$$

The probability that the unlabelled bag contains type A mobile phone cases is $0 \cdot 17899$.

