

Terminology

- TRUE will be represented by 1
- FALSE will be represented by 0
- · Variables will be single letters e.g. A
- Logical operator OR will be +
 - A+B represents A OR B
- Logical operator AND will be
 - A.B represents A AND B
- Logical operator NOT will be an overbar
 - Ā means NOT A
- Logical operator XOR will be ⊕
 - A⊕B means A XOR B

Order of precedence

There is an order of precedence for operations in Boolean algebra, just like BIDMAS is used in mathematical algebra.

The order of precedence is (highest first): Brackets, NOT, XOR, AND, OR

Simplifying Boolean expressions

Using the OR operation

- Identity law A + 0 = A
- Annulment law A + 1 = 1
- Idempotent law A + A = A
- Inverse law $A + \bar{A} = 1$

Using the AND operator:

- Identity law A.1 = A
- Annulment law A.0 = 0
- Idempotent law A.A = A
- Complement law A. Ā = 0

Commutative Law

The commutative laws of Boolean algebra are:

$$A.B = B.A$$

A+B=B+A

 $A \oplus B = B \oplus A$

Associative Law

The associative laws of Boolean algebra are:

$$A.(B.C) = (A.B).C$$

$$A + (B+C) = (A+B) + C$$

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C$$

Absorptive law

$$A + (A.B) = A$$

Α	В	A.B	A + (A.B)
1	1	1	1
1	0	0	1
0	1	0	0
0	0	0	0

The truth table shows that the final column is A Similarly, it can be shown that A.(A+B) = A

Working with brackets

The distributive law is used to expand brackets.

$$A_{,}(B + C) = A_{.}B + A_{.}C$$

Factorising expressions can be done if terms have a common factor.

$$A.B + A.C = A.(B + C)$$

Example question and solution

AS examinations include questions involving both truth tables and Boolean algebra. Here are two examples from the 2018 examination.

1. Complete the following truth table.

Γ/

[8]

Α	В	С	AORC	BANDC	(A OR C) XOR (B AND C)	NOT ((A OR C) XOR (B AND C))
0	0	0				
0	1	0				
1	0	0				
1	1	0				
0	0	1				
0	1	1				
1	0	1				
1	1	1				

4. Clearly showing each step, simplify the following expression using Boolean identities and rules:

$$A.(\bar{A} + B) + \bar{C}.(A + B) + A.(\bar{B} + C) + \bar{B}.B$$

Answers:

A)) TON OR C) XOR (B (C) DNA	(A OR C) XOR (B (D UNA	ВАИВС	ЭЯОА
l	0	0	0
l	0	0	0
0	l	0	ı
0	l	0	ı
0	ŀ	0	l
ı	0	l	ı
0	l	0	l
l	0	l	l

$$A.(\overline{A} + B) + (\overline{C}.(A + B) + A.(\overline{B} + C) + \overline{B}.B$$

$$A.(\overline{A} + B) + (\overline{C}.(A + B) + A.(\overline{B} + C)$$

$$A.(\overline{A} + B) + (\overline{C}.(A + B) + A.(\overline{B} + A.C)$$

$$A.(B + A.B) + (\overline{C}.A + A.B + A.C)$$

$$A.(B + B) + (\overline{C}.A + \overline{C}.B + A.C)$$

$$A.(B + B) + A.(\overline{C}. + C) + \overline{C}.B$$

$$A.(B + B) + A.(\overline{C}. + C)$$

$$A.(B + B) + A.(\overline{C}. + C)$$

$$A.(B + B) + A.(\overline{C}. + C)$$

$$A.(B + B) + A.(A.(A.B) + C.(B.B)$$

$$A.(A.B) + A.(A.B)$$