A level Further Maths

6.3 Moments and Centre of Mass

Terminology and Modelling

Centre of mass – The point through which the mass of an object is concentrated.

Moment – A measure of the turning effect of a force on a rigid body.

Coplanar – Acting in the same plane.

Lamina – A 2D object whose thickness can be ignored.

Uniform – Mass is distributed evenly.

Density – Often denoted by ρ .

In 2D, a measure of mass per unit area, units kg/m²

In 3D, a measure of mass per unit volume, units kg/m³

2D Problems

From page 8 of the formula booklet. —

ACB is the diameter of a semi-circular lamina with centre C. A right-angled triangular lamina ADB is added as well as a particle at C to form a uniform lamina, as shown below. The particle at

Centres of Mass of Uniform Bodies

Triangular lamina: $\frac{2}{3}$ along median from vertex

Semi circle: $\frac{4r}{3\pi}$ from straight edge

along axis of symmetry

Quarter circle: $\bar{x} = \frac{4r}{3\pi}$ $\bar{y} = \frac{4r}{3\pi}$ from vertex

C has a mass equal to twice that of the semi-circle.

Shape	Area/mass	Distance from AB	Distance from AD
	$\frac{1}{2}\pi a^2 \rho$	$(-)\frac{4a}{3\pi}$	а
	$3a^2\rho$	а	$\frac{2a}{3}$
0	$\pi a^2 ho$	0	а
B A 3a D	$a^2\rho\left(\frac{3}{2}\pi+3\right)$	\bar{x}	\overline{y}

Moments about \overline{AB} $a^{2}\rho\left(\frac{3}{2}\pi+3\right)\overline{x} = \left(\frac{1}{2}\pi a^{2}\rho\right)\left(-\frac{4a}{3\pi}\right)$ $+ (3a^{2}\rho)(a)$ $\overline{x} = \frac{7}{3\left(\frac{3}{2}\pi+3\right)}a$

a 3a D	$a^{2}\rho\left(2^{\pi+3}\right)$	X
Moments ab		2) 7,
$a^2\rho\left(\frac{3}{2}\pi+3\right)\bar{y}$	$=\left(\frac{1}{2}\pi a^2\rho\right)(a)+$	$(3a^2\rho)\left(\frac{2a}{3}\right)$
$+(\pi a^2\rho)(a)'$	- /	0.09
$\left(\frac{3}{2}\pi+2\right)$		
$\overline{y} = \frac{\sqrt{-}}{\sqrt{2}}a$		

 $\left(\frac{3}{2}\pi+3\right)$

Suspension from a fixed point

Volume of revolution

$$V\overline{x} = \pi \int_a^b xy^2 dx$$
 where $V = \pi \int_a^b y^2 dx$

$$V\overline{y} = \pi \int_{c}^{d} y x^{2} dy$$
 where $V = \pi \int_{c}^{d} x^{2} dy$

3D Problems

3D Composite body

A composite solid body consists of a uniform cone capped by a uniform hemisphere. The total height of the solid is 4r cm, where r represents the common radius. The ratio of the density of the hemisphere to that of the cone is 3:1.

	Shape	Mass	Distance from Vertex
		$\frac{2}{3}\pi r^3 \times 3\rho$ $(= 2\pi r^3 \rho)$	$3r + \frac{3r}{8}$ $\left(=\frac{27}{8}r\right)$
4r		$\frac{1}{3}\pi r^2 \times 3r \times \rho$ $(=\pi r^3 \rho)$	$\frac{3}{4}(3r) = \frac{9}{4}r$
	4r	$\pi r^3 \rho + 2\pi r^3 \rho$ $(= 3\pi r^3 \rho)$	Ћ

 \overline{h} is the distance of the centre of mass vertically above the vertex of the cone.

The following results are not provided:

Diagram	Body	Volume/ Curved Surface Area	Height of COM above base
	Solid sphere, radius <i>r</i>	$\frac{4}{3}\pi r^3$	r
	Solid hemisphere, radius <i>r</i>	$\frac{2}{3}\pi r^3$	$\frac{3}{8}r$
	Hollow hemisphere, radius <i>r</i>	$2\pi r^2$	$\frac{1}{2}r$
	Solid cone or pyramid, height h , radius r	$\frac{1}{3}\pi r^2 h$	$\frac{1}{4}h$
	Hollow cone or pyramid, height <i>h</i> , radius <i>r</i>	πrl (l is sloping height)	$\frac{1}{3}h$

Moments about vertical through vertex

$$3\pi r^3 \rho \times \overline{h} = \pi r^3 \rho \times \frac{9}{4} r + 2\pi r^3 \rho \times \frac{27}{8} r$$

$$\overline{h} = 3r$$

