
# **GCE Physics Component 3.9 Magnetic Fields**



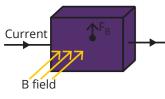
## Fleming's Left-Hand rule:

When a current flows through a magnetic field at an angle, a force acts on the wire. The direction of this force is perpendicular to the current and the field, and can be predicted using Fleming's Left-Hand rule.



The size of the force is given by this equation:

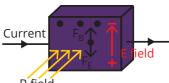
 $F = BIl \sin\theta$ 


B is the magnetic field strength (or flux density), measured in **Tesla** (T), where 1 T = 1  $NA^{-1}$  m<sup>-1</sup>.

As current is defined as the rate of flow of charge the above equation can be expressed in terms of the force on a single charged particle.

### $F = Bqv \sin\theta$

In both equations,  $\theta$  is the angle between the current and the field lines.


# Hall Voltage, V<sub>H</sub>:



When a current flows at 90° through a magnetic field, there will be a **force on the electrons** flowing through the wire, forcing them to one surface of the conductor. This will cause

one surface to become **negative** and the other **positive**.

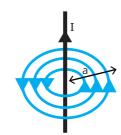
This creates an electrical field between the surfaces and cause a force on the electrons in the opposite direction.



In the end, the magnetic force and the electrical force will **balance** and **an equilibrium is** reached.

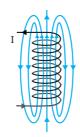
$$qE = Bqv$$

As  $E = \frac{V}{d}$  this can be written as  $V_H = Bvd$  where  $V_H$  is the potential difference between the surfaces, measured with a voltmeter, when this equilibrium is reached.


This can be used to measure the strength of B fields as

$$B \propto V_H$$
.

# **Magnetic fields:**


Magnetic fields are created by current carrying wires, the shape of the field can be predicted by the right-hand grip rule.

### Long straight wire



Thumb in the direction of the current, fingers in the direction of the field.

#### Solenoid



Fingers in the direction of the current, thumb in the direction of the field inside the coil.

The strength of each field is given by these equations:

$$B = \frac{\mu_o I}{2\pi a}$$

Where *a* is the distance from the wire to a point.

### $B = \mu_o nI$

Where *n* is the number of turns per meter.

$$n = \frac{number\ of\ turn}{length}$$

The strength can be increased by using an iron core inside the solenoid.

### **Parallel wires:**

When a current passes through a wire it creates a magnetic field. If two parallel wires carry a current, they will each be in the others magnetic field, therefore a force will act on the wires.



In this example, consider wire X, it creates a magnetic field with strength,  $B=\frac{\mu_o I_X}{2\pi a}$ . As wire Y is in this field, the force on wire Y will be  $F=BI_Yl$ . The direction of the force, given by Fleming's Left-Hand Rule, will be towards wire X.

Newton's 3<sup>rd</sup> law means that there will also be an equal force on wire X towards wire Y.

# **Charged particles in E and B fields:**

Any moving charges can be deflected by a magnetic field or an electric

**Magnetic forces** always act perpendicular to the motion. Therefore, the magnetic force acts as a centripetal force and makes the charges move in a circular path.

$$Bqv = \frac{mv^2}{r}$$

The **electrical force** between two parallel plates is constant due to the uniform electric field. Therefore, the force acting on the electron here,  $F_E$  will cause a vertical acceleration but not change its horizontal velocity.



1000V

### **Particle accelerators:**

When a charged particle is accelerated by a potential difference it gains kinetic energy. In this example an electron is accelerated by a p.d. of 1000V, the energy it gains = 1000 eV, where 1 eV = 1.6 × 10<sup>-19</sup> J.

There are 3 types of particle accelerators which use this process. They all use an alternating p.d. to accelerate the particles in the gaps between electrodes.

|                   | Linear                                                               | Cyclotron                                                         | Synchotron                                                  |
|-------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|
|                   |                                                                      |                                                                   |                                                             |
| Path              | Straight line                                                        | Circular but with increasing radius                               | Circular, constant<br>radius                                |
| Magnetic<br>field | None                                                                 | Constant, to<br>ensure circular<br>motion                         | Increasing to ensure circular motion with constant <i>r</i> |
| Alternating p.d.  | Constant, increasing length of tube ensures the p.d. changes in time | Constant, increasing path length ensures the p.d. changes in time | Increasing                                                  |