Candidate Name	Centi	re Nu	mber	Candidate Number				er
				0				

GCSE

MATHEMATICS
UNIT 1: NON-CALCULATOR
INTERMEDIATE TIER

SPECIMEN PAPER SUMMER 2017

1 HOUR 45 MINUTES

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions in the spaces provided in this booklet.

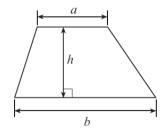
Take π as 3·14.

INFORMATION FOR CANDIDATES

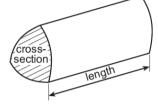
You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.


The number of marks is given in brackets at the end of each question or part-question.

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	6					
2.	6					
3.	3					
4.	2					
5.	6					
6.	6					
7.	3					
8.	5					
9.	2					
10.	6					
11.	7					
12.	7					
13.	4					
14.	3					
15.	4					
16.	4					
17.	2					
18.	4					
TOTAL	80					


The assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing in question **8**.

Formula list

Area of a trapezium = $\frac{1}{2}(a+b)h$

Volume of a prism = area of cross section \times length

7 1	
(d) $\frac{7}{8} - \frac{1}{4}$	

1.

2.	(a)	Write down the next two numbers in	the following sequence.	[2]
		18 17 14 9		
	(b)	Simplify the expression $7x + 3y - 3y = 3$	5x - 6y.	[2]
	(<i>c</i>)	Using the formula $N = 7D + 3E$, find $D = 2$.	and the value of E when N = 26 ar	nd [2]
	•••••			

- **3.** Circle the correct answer for each of the following statements.
 - (a) The area of the right-angled triangle drawn below is

240 cm² 60 cm² 260 cm² 120 cm² 6240 cm² [1]

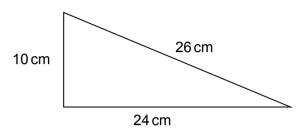
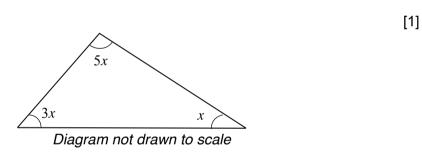



Diagram not drawn to scale

(b) The value of x shown in the triangle below is

40° 20° 9° 180° $\frac{1}{9}$

[1]

(c) The volume of the cuboid shown below is

 30 m^3 10 m^3 31 m^3 62 m^3 235 m^3

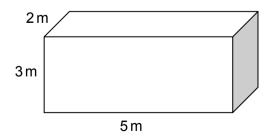


Diagram not drawn to scale

4.	Beti is twice as old as Afraz. Huw is three years younger than Beti. The sum of the ages of these three people is 37 years.								
	Calculate the age of each	n of these three people.	[2]						
Á	Afraz isyears old	Beti isyears old	Huw isyears old						

5.	In a game, cards are chosen at random from two boxes. One card is chosen at random from box A and one card is chosen at random from box B.										
	Box A contains thes	e two c	ards.	_;	3	+3					
	Box B contains these	e five c	ards.		2	-1		0	+1	+:	2
	The two numbers or The person choosing										
	Complete the table to for the number of pri									an esti	mate [6]
					_						
					Вс	х В					
			-2	-1	0	+1	+2				
	Box A	_3 A				-3	-6				
		+3				+3	+6				

Solve each of the following equations.

6.

(b)	3(2x+7)=9	[3]
	the following statements true or false? Circle the correct answer. must give a full explanation of your decision in each case.	
	en a number that ends in 8 is divided by 2, the answer is always a tiple of 4.	[1]
	true / false	
	en two consecutive whole numbers are multiplied together, the ver is always an even number.	[2]

8. You will be assessed on the quality of your organisation, communication and accuracy in writing in this question.

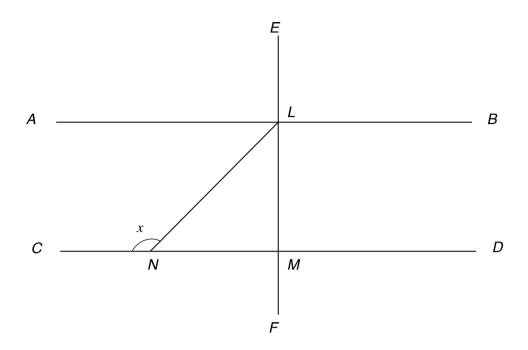
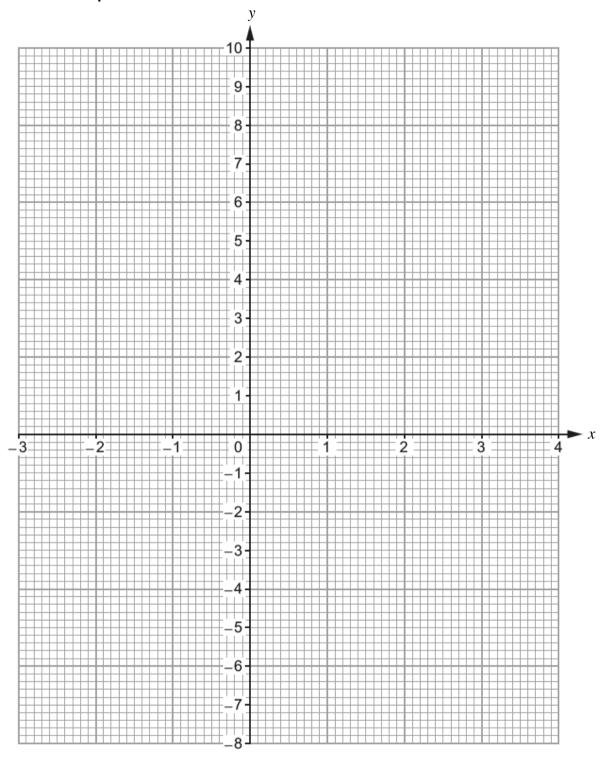


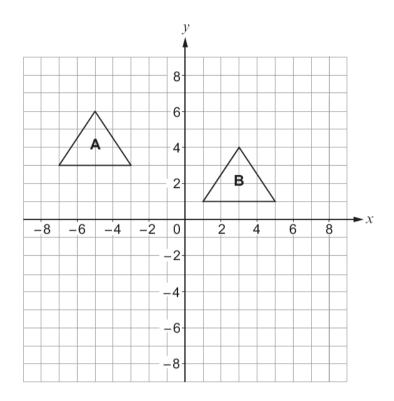
Diagram not drawn to scale


The line AB is parallel to the line CD.

The line CD is perpendicular to the line EF . Triangle LMN is an isosceles triangle. Find the size of angle x . You must show all your working.	[5]

9. Select four different whole numbers between 1 and 9 inclusive suc						ve such that	t,		
		 their mean is 	6						
		their range is	5.				[2]		
		Answer:							
10.		either walks, cycles, t nethod of travel each	•		•		•		
		able below shows the omly chosen day.	e probability	for three of	her method	ls of travel o	on any		
		Method of travel	Walk	Bike	Car	Bus			
		Probability		0.45	0.1	0.25			
	(a) 	(a) Calculate the probability that, on any randomly chosen day, she walks to work. [2]							
	(b)								
	(c) What is the probability that, in any randomly chosen week, Mair travelled to work by car on the Monday and by bus on the Tuesday? [2								

	The table be from –2 to 4				·			
	Complete th	e table b	y finding t	the value	of y for.	x = 2.		
	х	-2	-1	0	1	2	3	4
y =	$x^2 - 3x - 2$	8	2	-2	-4		-2	2
(b)	On the grap		pposite,	draw the	graph of	$y = x^2 -$	3x - 2 fo	r value
	from -2 to 4							
							2	
(c)	Using your of Give your ar					of the eq	uation x ²	-3x-
	J. 1. 2 J. 2 2				, p. 10 10 1			
	Solutions a	re		6	and			
(d)	By drawing a			our grap	h, write c	lown the	two solut	ions of
(d)	By drawing a equation x^2 Give your ar	-3x + 1	=0.			lown the	two solut	ions of


For use with question 11.

(a)	Use a ruler and a pair of compasses to construct an an point <i>G</i> .	gle <i>FĜH</i> of size 30° at [3]
	F	—— G
<i>(</i> 1-)	A manufacture to the content of the content of the COT of the content of the cont	
(b)	A regular polygon has interior angles of 135°. How many sides does this polygon have?	[3]

12.

(c) Shape A is translated onto Shape B.

Which one of the following vectors describes the translation?

Circle your answer.

[1]

$$\begin{pmatrix} 8 \\ -2 \end{pmatrix} \qquad \qquad \begin{pmatrix} 2 \\ -8 \end{pmatrix} \qquad \qquad \begin{pmatrix} -8 \\ -2 \end{pmatrix} \qquad \qquad \begin{pmatrix} -2 \\ 8 \end{pmatrix} \qquad \qquad \begin{pmatrix} -8 \\ 2 \end{pmatrix}$$

13.	(a) Calculate the largest share when £400 is shared in the ratio 1:2:5.					
	(b)	A price of £63 includes VAT at a rate of 5%. What was the price before VAT was added?	[2]			

14.	Circle	vour	answer	in	each	of	the	following

(a) The value of 2^{-3} as a fraction in its simplest form is

 $\frac{1}{6}$ $-\frac{1}{8}$ $\frac{1}{8}$ $-\frac{1}{8}$

[1]

(b) $\frac{2}{9}$ as a recurring decimal is

0.2929... 0.2999... 0.9292... 0.9222...

[1]

(c) 17^0 is equal to

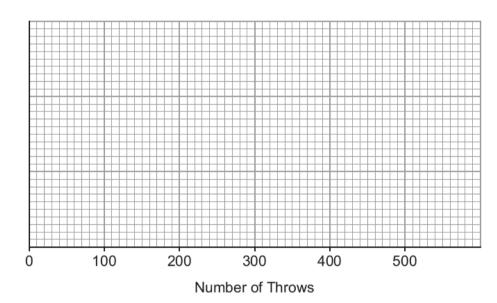
17 1 0 $\frac{1}{17}$ 1.7

[1]

- **15.** A six-sided dice was thrown repeatedly. After every 100 throws, the **cumulative** number of sixes thrown was recorded.
 - (a) Complete the table below, which gives a summary of the results obtained.

	1	
	ı	

[1]


Number of throws	100	200	300	400	500
Number of sixes	8	28	60	72	80
Relative frequency	0.08	0.14		0.18	

.....

(b) Draw a relative frequency diagram to show the information given in the table.

[1]

(c) From the table, which value gives the best estimate for the probability of throwing a six? You must give a reason for your choice.

[1]

.....

(d) Do you think this is a fair dice? You must give a reason for your choice. [1]

.....

/- \	in standard form, the val			
(a)	$(4.1 \times 10^{-5}) \times 3000,$			
(b)	$(1.5 \times 10^3) \div (3 \times 10^6).$			
The o	liagram shows the first fo	our patterns of a seq	uence.	
	2	3	4	

18. The points A, B, C and D lie on the circumference of a circle centre O and $B\hat{C}D = 62^{\circ}$.

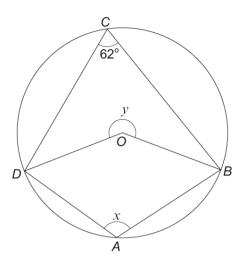


Diagram not drawn to scale

[2]	x) Find the size of angle x , giving a reason for your answer.
[2]	b) Find the size of angle y , giving a reason for your answer.