Candidate Name	Centre Number	Candidate Number	

WELSH JOINT EDUCATION COMMITTEE General Certificate of Education Advanced

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch

455/03

GEOLOGY GL5

THEMATIC UNIT 3

GEOLOGICAL EVOLUTION OF BRITAIN

P.M. TUESDAY, 19 June 2007

For Examiner's Use only.

Section A	1	
	2	
Section B	3	
	4	
	5	
Total	1 50	

Answer both questions in Section A (25 marks) and one question in Section B (25 marks).

SECTION A

Answer **both** questions in the spaces provided. This section should take approximately half an hour to complete.

1. Figure 1a is a map showing some of the Variscan structures present in south west England and south Wales. The locations (1, 2 and 3) of three field sketches are also shown.

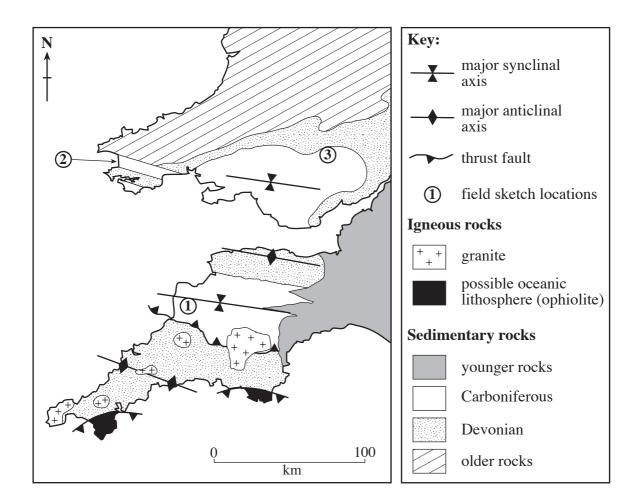


Figure 1a

(a) Using **Figure 1a**,

(i) state the regional trend of the major fold axes, [1]
 (ii) state the directions of the greatest compressional stresses (σ max) which produced the structures. [1]

(b) Field sketches at locations 1 and 3 are shown in Figure 1b.

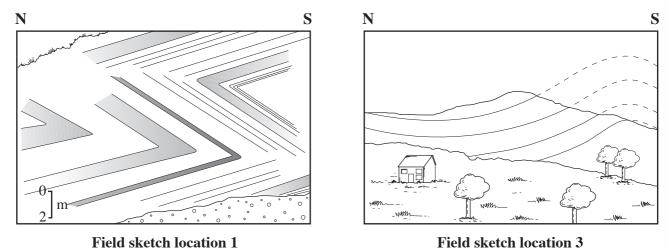


Figure 1b

(i) Complete **Table 1a** by adding appropriate descriptions of the folds shown in the field sketch at location **1**. [3]

Fold description at location 1			
shape of the fold hinge			
apparent angle of dip of the axial plane			
interlimb angle			

Table 1a

(ii)	Describe two differences between the folds at locations 1 and 3.	[2]
	1	
	2	
		

(c) A field sketch of the structures at location 2 is shown in Figure 1c.

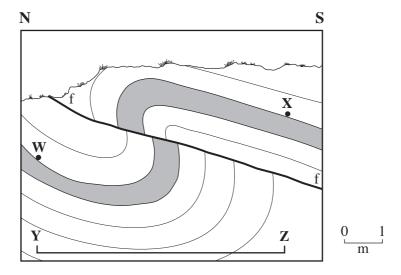


Figure 1c

Calculate the amount of crustal shortening produced at location 2 using the formula below and enter the result in **Table 1b**. The distance **W** to **X** is 10 m measured along the bedding plane. Show your working. [2]

% crustal shortening = $\frac{\text{distance along bed from } \mathbf{W} \text{ to } \mathbf{X} - \text{distance } \mathbf{Y} \text{ to } \mathbf{Z}}{\text{distance along bed from } \mathbf{W} \text{ to } \mathbf{X}} \times 100$

Location	1	2	3
crustal shortening	60%		2%
cleavage	strong	weak	none

Table 1b Showing crustal shortening and cleavage at each location

(d) South Wales and the south west of England were clo plate margin during the Variscan Orogeny.'	
Evaluate this statement using Figure 1a, Table 1a and	d Table 1b . [5]
	Total 14 marks

2. Figure 2a is a simplified geological map showing the Palaeozoic (Ordovician and Silurian) rocks of the Southern Uplands of Scotland. Numbers 1-3 show the locations of the three borehole logs drawn below the map in Figure 2b. Figure 2c shows the details of turbidite units from borehole 2.

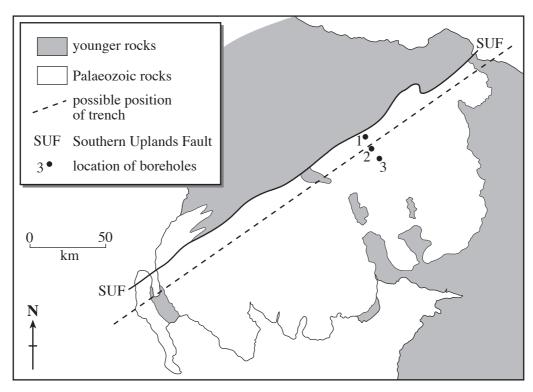


Figure 2a

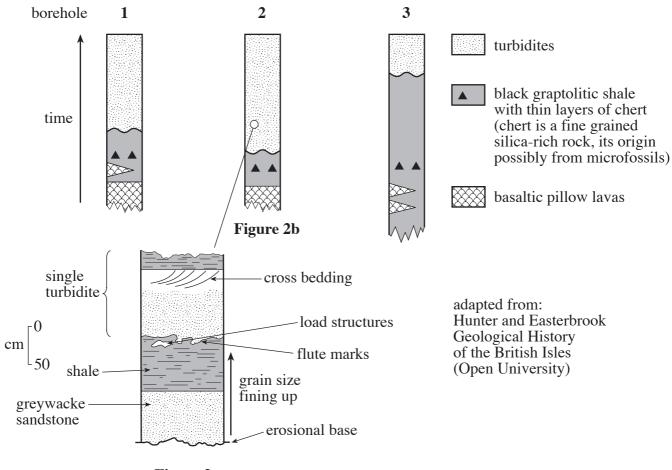


Figure 2c

Refer 1	to F	igure	2c.
---------	------	-------	-----

(a)	(i)	Name one sedimentary structure present in a single turbidite unit which can be used to determine the direction of current flow. [1]
	(ii)	Explain the origin of the fining upwards grain size within the single turbidite. [3]
Refe	r to Fi	igure 2b.
<i>(b)</i>	(i)	Describe the likely environment of deposition of the black graptolitic shale with thin layers of chert present in all three boreholes. State the evidence for your conclusions. [3]
	(ii)	Explain the possible significance of the basaltic pillow lavas in the boreholes. [2]
Refe	r to Fi	gures 2a and 2b.
(c)		position of a possible oceanic trench has been marked on Figure 2a . State the evidence the sediments in the boreholes which could be used to support this interpretation. [2]

SECTION B

Answer one question from this section.

Write your answer in the remaining pages of this booklet.

- **3.** (a) Interpret the geology of the Tertiary Igneous Province of north west Britain in plate tectonic terms.
 - (b) Describe the evidence for rifting and subsidence in the North Sea and evaluate its relationship to plate movements in the Mesozoic and Tertiary. [25]
- **4.** Palaeomagnetic evidence suggests that during the Late Palaeozoic (Devonian, Carboniferous and Permian), Britain drifted across the Equator.
 - (a) Describe the evidence from **sedimentary rocks** and **fossils** which suggests an equatorial climate in Britain in the Late Palaeozoic.
 - (b) Describe and evaluate the **palaeomagnetic** evidence. [25]
- **5.** (a) Describe a range of techniques for collecting geological data in the field and explain how the data can be presented in a variety of forms.
 - (b) Evaluate the usefulness of these techniques in the interpretation of the geology of an area with which you are familiar. [25]

(VEC 00)		