Candidate Name	Centre Number	Candidate Number

WELSH JOINT EDUCATION COMMITTEE General Certificate of Education Advanced

CYD-BWYLLGOR ADDYSG CYMRU Tystysgrif Addysg Gyffredinol Uwch

454/01

GEOLOGY - GL4

INTERPRETING THE GEOLOGICAL RECORD

A.M. MONDAY, 11 June 2007

(2 Hours)

			Examiner only
Section A	1.	14	
	2.	15	
	3.	14	
	4.	17	
Section B	5.	10	
	6.	6	
	7.	10	
	8.	10	
Total		96	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a protractor;
- the Geological Map Extract;
- a hand-lens or magnifier to study the map (optional);
- a calculator.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all the questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each sub-question.

Candidates are reminded that marking will take into account the quality of communication used in your answers.

No certificate will be awarded to a candidate detected in any unfair practice during the examination.

JD*(454-01)

SECTION A

Answer all questions in the spaces provided.

This section should take approximately 1 hour to complete.

1. Rocks A, B and C each have similar bulk chemical compositions but differ in their modes of formation. Only Rock A is sedimentary.

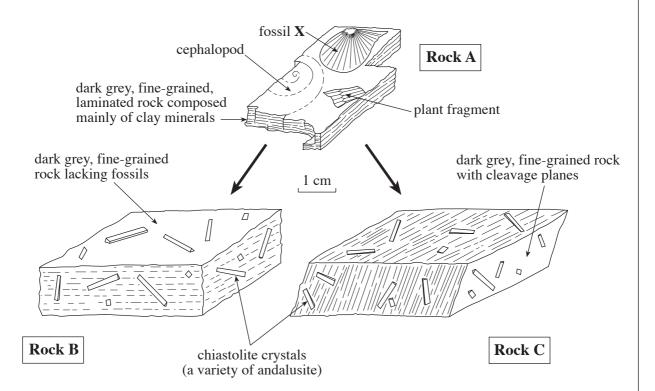
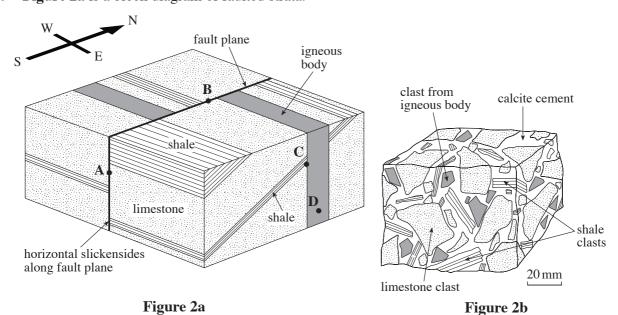


Figure 1

(a_i)) Re	ter to	Rock	A 1n	Figure	1.
---------	------	--------	------	-------------	--------	----


(i)	State the type of fossil labelled X .	[1]
(ii)	Giving two reasons, suggest a name for Rock A .	[3]
	Reason 1	
	Reason 2	
	Name	

	(iii)	State a possible environment of deposition for Rock A. Explain the two pieces of evidence for this conclusion. [3]				
		Environment				
		Evidence 1				
		Evidence 2				
(b)	Refe	Refer to Rock B in Figure 1 .				
		cribe the conditions under which Rock B could have been formed from Rock A . State evidence for your conclusions. [3]				
(c)		cribe the sequence of events that could have led to the formation of Rock C from a A. Explain the evidence for your conclusions.				

Total 14 marks

[2]

2. Figure 2a is a block diagram of faulted strata.

(a) (i) Complete the table below to describe the characteristics of the fault. [4]

Fault characteristics	Description
Strike directions	•
Dip (degrees)	•
Throw (vertical displacement)	0 (zero) metres
Principal stress directions of σ max	•
Type of fault	•

Explain how slickensides on a fault plane can be used to determine fault movement.

(b)	Figure 2b shows the texture of the rock at one of the locations A, B, C or D on F State in which location (A-D) the specimen is most likely to have been found. Explain the evidence from the specimen for your answer.	
	Location	
	Evidence	

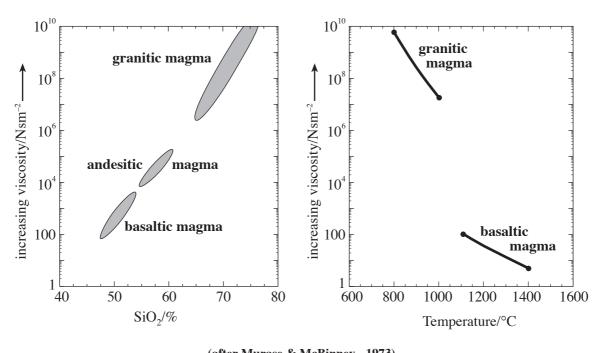
(ii)

(c) Figure 2c is a photograph of a typical exposure of the igneous body in Figure 2a.

structures composed of dark, mafic, medium-grained igneous rock

poorly consolidated aggregate of crystals and clay along joints with red-brown staining

Figure 2c


A student incorrectly concluded that "the structures are pillow structures formed during the submarine eruption of lava."

(i)	Evaluate the evidence from Figure 2a and Figure 2c which suggests the student's conclusion was incorrect . [3]
(ii)	Explain how these structures may have been produced by chemical weathering processes. [3]

Turn over.

Total 15 marks

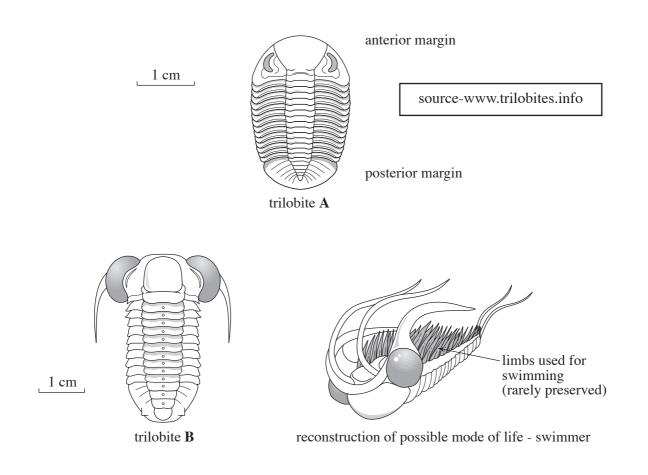
3. Mechanisms of magma emplacement and extrusion depend upon the viscosity of magma.

(after Murase & McBinney - 1973)
Figure 3a Figure 3b

(a) **Figure 3a** shows the viscosity range of three types of magma related to their composition (SiO₂ content). Describe the relationship between viscosity and SiO₂ content. [2]

(b) Refer to **Figure 3b**

(i)	Describe one similarity and one difference in the relationship between viscosity	and
	temperature for granitic magma compared with basaltic magmas.	[2]


Similarity

Difference

	(ii)	Using Figure 3b , state the temperature below which basaltic magma becomes solid. [1]
	(iii)	Draw a line on Figure 3b to show the probable relationship between viscosity and temperature for an andesitic magma. [2]
(c)	Usin low-	g evidence from Figures 3a and 3b , explain why basalt lava flows commonly form angle "shield" cones extending many kilometres from the volcanic vent. [3]
(d)		mical analysis of the volcanic gases collected from andesitic volcanoes at destructive vergent) plate margins indicates the presence of ions usually found in seawater.
	(i)	Account for the presence of seawater ions in volcanic gases collected at destructive plate margins. [2]
	 (ii)	From your knowledge, explain the likely effect of seawater on the generation and
		eruption of magma at destructive plate margins. [2]

Total 14 marks

4. Figure 4a illustrates three fossil trilobites (**A-C**) interpreted as having different modes of life based on their external skeleton. Two reconstructions of possible modes of life are shown for trilobites **B** and **C**.

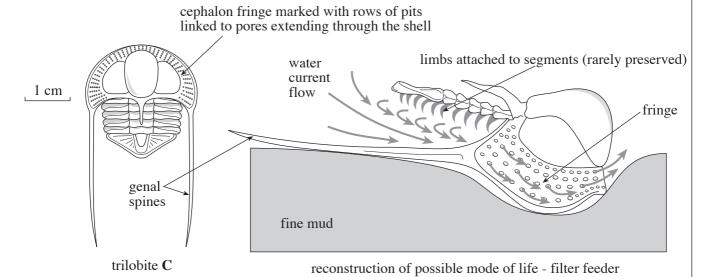


Figure 4a

Refer to Figure 4a

	kidne	ey-shaped eyes and no genal s rger than the cephalon."	shows a glabella which is wider at the anterior margin spines. The thorax contains 14 segments and the pygidium [2]
(b)	(i)	Explain how the morpholo swimmer.	gical features of trilobite B suggest that it was an active [2]
	(ii)		c C, suggest a possible function of the morphological osed reconstruction of the animal in filter-feeding mode.
		Morphological feature	Possible function
	C	Genal spines	•
	L	imbs	•
	F	ringe on the cephalon	•
(c)	like		norphology to function and mode of life in extinct groups be problems may be minimised in areas of exceptional [3]

Figure 4b illustrates selected data from a sample of Welsh trilobites showing how the (*d*) average number of segments on the pygidia of one trilobite group changes with time.

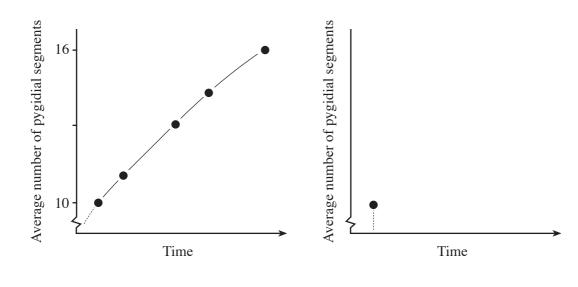


Figure 4b Figure 4c

Trilobites have been shown to demonstrate a gradual pattern of evolutionary change in the fossil record (gradualism) rather than an alternative pattern with periods of stability (stasis) interrupted by sudden change (punctuated equilibrium).

(i)	Explain why the evolutionary pattern in Figure 4b is interpreted as showing gradualism rather than punctuated equilibrium. [2]
(ii)	Complete Figure 4c by sketching a graph that might be expected if the pattern of pygidial segments in trilobites showed <i>punctuated equilibrium</i> . Clearly label (with an
	S →) a period of 'stasis'. [2]
Usin patte	g your knowledge, evaluate how reliable the fossil record is in interpreting evolutionary rns. [3]

(e)

BLANK PAGE

(454-01) **Turn over.**

SECTION B

Questions 5–8 relate to the **British Geological Survey geological map** extract of **Worcester** at **1:50,000** and **1:25,000** scales.

Answer all questions in the spaces provided.

This section should take approximately 1 hour to complete.

5.	(a)		Refer to the outcrop of the Precambrian Malverns Complex (MvC) on the $geological\ map\ (Map\ 1)$.								
		(i)	State the most common superficial deposit (drift) found to the east and west of Malverns Complex (MvC).	of the [1]							
		(ii)	Describe the outcrop pattern of the Malverns Complex (MvC).	[2]							

(b) Figure 5 is a field sketch of the boundary between the Malverns Complex (MvC) and the Wyche Formation (Wy) at GR 766452.

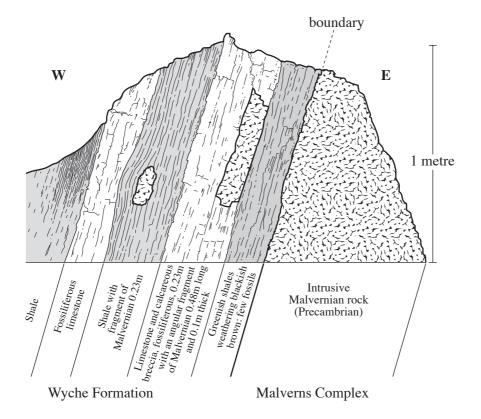


Figure 5

Source: Geology of country around Worcester (BGS-1997)

With reference to Figure 5 and the generalized geological column,

(i) complete the table below to identify the characteristics of the Wyche Formation ($\mathbf{W}\mathbf{y}$), [4]

Formation	Wyche Formation (Wy)	Malverns Complex (MvC)
Dip direction	•	Not applicable
Apparent dip angle (degrees)	•	Not applicable
Rock type (igneous, sedimentary or metamorphic)	•	Intrusive igneous
Age	•	Precambrian

(11)	intrude the Wyche Formation (Wy),	(2) (2)
(iii)	name the type of boundary between the Wyche Formation (Wy) and Complex (MvC) present at this locality.	Malverns [1]

Total 10 marks

(454-01) **Turn over.**

6. Figure 6a shows a Bouguer gravity anomaly map across the East Malvern Fault which includes the area of **Map 1**. **Figure 6b** is a partly completed gravity anomaly profile along the line of section on **Map 1** (**A – B**) extended to **C** on **Figure 6a**.

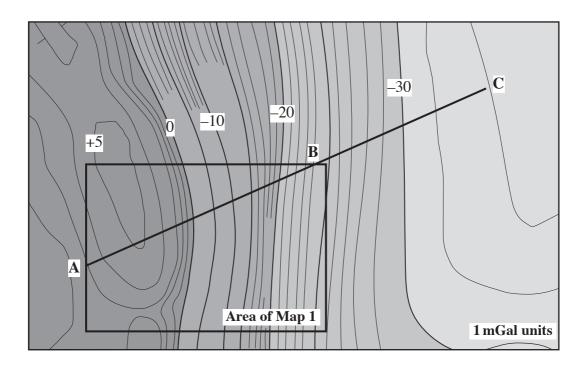


Figure 6a

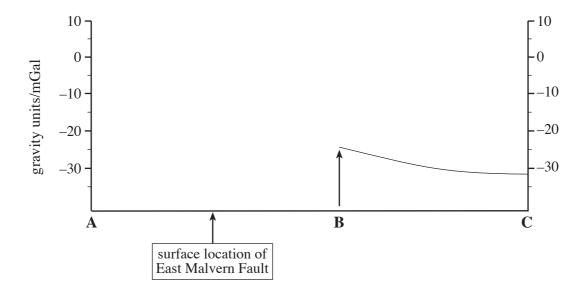


Figure 6b

Ref	er to	Figur	e 6a,	geol	ogic	al l	Map	1	and	the	cross	section	as	appro	priate	e
-----	-------	-------	-------	------	------	------	-----	---	-----	-----	-------	---------	----	-------	--------	---

(i)	Complete the profile on Figure 6b to show the variation in gravity profil line of section A to B .	le along the [3]
(ii)	Explain the Bouguer gravity anomaly data in terms of:	
	• the probable density contrasts between rocks of the Permo-Trias an formations;	d the older
	geological structure.	[3]
•••••		
	Tot	tal 6 marks

(454-01) **Turn over.**

7.	Refer to geological Ma	p 1, the	cross section	and genera	lised geolo	gical c	column as	appropriate.
	restor to geological tita	P 1, 1110	er opp pection	and Senera	moeta Secre	51001	Oldinin do	appropriat

<i>(a)</i>	Complete the table below to describe the fold structure responsible for the	outcrop pattern
	of the Aymestry Limestone (AL) in Map 1, to the north east of the	Colwall Fault,
	(GR 752444).	[4]

Fold characteristic	Description
Fold type	•
Fold symmetry	•
Trend of axial plane trace	•
Plunge direction	•

(b) (i)	The cross section shows the base of Aymestry Limestone (AL) aligned with the base of the Woolhope Limestone (WoL) across the Colwall Fault.
	Using the generalised geological column , calculate the throw (vertical displacement) of the Colwall Fault. Show your working. [2]
	Throw (vertical displacement)m
(ii)	Using evidence from the cross section only , critically evaluate the following statement.
	The Colwall Fault and the East Malvern Fault both
	 have similar dips to the East, result from crustal shortening (compression) and formed during the same period of deformation.

(454-01) **Total 10 marks**

8.

Refe	r to ge	ological Map 2 (an enlargement of the area shown on Map 1) and your knowledge.								
(a)	a) "Despite the crystalline nature of the igneous rocks, the Malverns Complex permeable and the margin of the outcrop is dominated by numerous freshwat									
		e a geological explanation for the high permeability associated with the Malve applex (MvC) and the presence of springs.	rns [2]							
(b)	(i)	Describe the variation in geology (rock type and structure) along the line of Colwall tunnel (between GR 761429 and GR 773436).	the [4]							
	(ii)	Assess the possible effects the geology may have had on tunnel construction.	 [4]							
		Total 10 may								

Total 10 marks

(454-01) Turn over.