wiec WJEC 2023 Online Exam Review

cbac

WIEC GCE Computer Science Unit 2 If you are accessing this
document in a web
All Candidates' performance across questions browser and are only

able to see this single
page, please download
the document and re-

Question Title N Mean SD Max Mark FF Attempt % + in Adobe Read
1 858 11.9 3.6 15 79.2 96.1 open It in Adobe Reader
in order to fully access
3 349 > 16 - 307 95 1 the exemplar material.
1 854 2.2 1.8 4 55.5 95.6
3 851 4.2 33 8 52.1 95.3
WIEC GCE Computer Science Unit 2
=
2
g
=}
o
0 10 20 30 40 50 60 70 80 90 100
Facility Factor %

	WJEC 2023 Online Exam Review
	WJEC GCE Computer Science Unit 2 - 2500U20
	Item Level Data
	Facility factor graph
	Section A - Question 1
	Mark scheme
	Example 1
	Example 1 marked

	Section A - Question 2
	Mark scheme
	Example 1
	Example 1 marked

	Section BIII - Python - Question 1
	Mark scheme
	Example 1
	Example 1 marked

	Section BIII - Python - Question 3
	Mark scheme
	Example 1
	Example 1 marked

	ADPF408.tmp
	Sheet1

1) a)

b)

Passenger Table

PassengerlD

Passenger-Booking

PassengerID
BookingID

Passenger Data Structure Table

Booking Table

BookingID

Fieldname Keyfield Data Type Field Length Validation
PassengerlD Yes — Indexed Integer Presence
PassengerName - String 30 Length (< 30 Chars)
PassengerDOB - Date 2/2/4 Range (1-31/1-12/*)
PassengerPostcode - String 8 Format (XXXX XXX)
PassengerAge - Integer 3 Type (Integers Only)
Booking Data Structure Table

Fieldname Keyfield Data Type Field Length Validation

BookingID Yes — Indexed Integer Presence

PassengerCount - Integer 3 Type (Integers Only)

BalloonName - String 30 Presence

PilotName - String 30 Presence

BookingDate - Date 2/2/4 Range (1-31/1-12/%)

Question Answer Mark | AO1 | AO2 | AO3 | Total
1. (a) Award 1 mark for each: 2.1b 5

e Name of Customers table is relevant 1

e Name of Bookings table is relevant 1

e Name of Trips table is relevant 1

e Correct relationship link from Customers to Bookings 1

(1:M)
e Correct relationship from Trips to Bookings (1:M) 1

(must indicate many side for each mark above)

= Customers

| CustomeriD
Firstname
Surname
Address 1
Address 2
Town
Postcode

DOB

etc. ..
A

BookinglD
CustomerlD

TriplD
Cost

——

> |

TriplD
TripName
Pilot

Date
Time

etc...

—

Question

Answer

Mark

AO1

AO2

AO3

Total

1. (b)

Any 2 tables from part 1la above:
(Expected Customer and Bookings)

Award max 2 marks for each bullet point

e Fieldnames (2 suitable fields in addition to KF)

e Data types (accept autonumber as type)

e Field lengths (accept single/double)

e Requirements for Validation (one mark for each type)
o Range, Format, Presence, Length . . .

e Foreign keys in booking table / Primary key in
Customers and Trips

Max 10 marks.
Indicative content

Non-exhaustive example of Customers table:

Fieldname | Keyfield | Data Field Validation
Type Length
CustomerID | Yes- Integer Single Presence
indexed

Title - String 10 Lookup
Mr, Mrs,
Miss ...

FirstName | - String 25 Length

Postcode | - String 9 Format
LLOO OLL

DOB - Date 2/2/4 Range

Etc . .

Booking table:

Fieldname | Keyfield | Data Field Validation
Type Length

BookinglD | Yes- Integer Single Presence
indexed

Customerl | Foreign | Integer Single Type

D key

TripID Foreign | Integer Type
Key Single

1+1
1+1
1+1

2.1b

10

1) a)

b)

Passenger Table — Passenger-Book ig [=—— Booking Table
PassengerlD Passenger|D Booking!D 5
BookingID
Passenger Data Structure Table
Fieldname Kevfield Data Type Field Length Validation
Passenger|D Yes — Indexed Integer Presence
PassengerName - String 30 Length (< 30 Chars)
PassengerDQOB - Date 2/2/4 Range (1-31/1-12/*)
PassengerPostcode - String 8 Format (XXXX XXX)
PassengerAge - Integer 3 Type (Integers Only)
Booking Data Structure Table
Fieldname Keyfield Data Type Field Length validation
BookingID Yes — Indexed Integer Presence
PassengerCount - Integer 3 Type {Integers Only)
BalloonName - String 30 Presence
PilotName - String 30 Presence
BookingDate - Date 2/2/4 Range (1-31/1-12/*)

10

Sticky Note

Please note: As per previous series the WJEC does not have a “preferred” method of solving
the task and any and all functional code will be given credit. It is important to note the code
is deemed suitably elegant to gain marks if it is functional. Code that “resembles” the
correct answer is not credited and all code must be functional to be awarded credit.

This candidate chose the Python programming language (please see wjec circulars for the
allowed version of the languages used) to complete the code completion question.

The programming task this year was considered to be of standard demand comparable to
previous papers. The facility factor indicates that candidates generally did well on the
practical programming aspects of this course.

Sticky Note

Section A was clear and well laid out and prepared the candidate well for answering the
section B program development questions.

Whilst the user interface is unclear and difficult to use credit was awarded for all above
points as they were implemented in code and fully functional.

It is to be noted that credit for a good User interface (CLI or GUI) has been awarded in this
specification.

You have been asked to analyse the scenario as a preliminary step towards creating a prototype
computer system for Sky Balloon Park.

Present your answers as a single word-processed document named: Section A

1. (@) Create an entity relationship diagram for the booking system described in the scenario.
There is no need to include any attributes. [5]

(b) Create a data structure table, including suitable validation checks, for two of the tables
in your entity relationship diagram. [10]

2)

| propose to use Python to create a suitable user interface for Sky Balloon Park. The program would include a GUI (Graphical
User Interface) as it would be the most likely interface for customers to want to make repeat bookings using as they are more
user friendly and intuitive to operate than alternatives (such as CLIs [Command Line Interfaces] which require in-depth
knowledge about computers, unlike GUIs) as they can provide visual elements of the program (e.g. buttons, search bars etc.).
The data structure | would use would be multiple records that make up multiple tables to form a relational database to store
this data as tables made up of records are able to store multiple different data types when storing related data. It is necessary
that the database is relational as we need to reference the passengers and bookings together in the program outside of their
own tables. | suggest using random access when accessing (reading from) files as it is more efficient to read from files than
when using serial access (time when customers would be waiting would be longer). Although it takes longer to write to
random access files as the location of the data must be calculated, this does not affect users as they can just enter their data
and leave without having to wait for the data to be properly saved. | would implement range validation checks to ensure
entered dates (e.g. DOB — First two sections should not exceed 31 and 12 respectively as there are no months with more than
31 days and there are 12 months) have been entered correctly and type checks to ensure data is stored as the correct type
(e.g. names should all be strings). | would use global variables in the program when dealing with data that must be accessed in
different parts of the program (e.g. Accessing passenger info when searching for a specific booking). | would use integer data
types for ages, key fields (primary and foreign keys) and passenger counts and would use strings for all other values other than
dates because strings can contain both numbers and English characters.

Question Answer Mark | AO1 | AO2 | AO3 | Total
2. Indicative content for discussion: 6 2.1b 6
e Discussion of interface (CLI/GUI)
e Data Structures (arrays/files)
e File handling (serial/random)
e Validation (range, format, presence, length)
e Local or global variables used
¢ Ability to handle data types (string/integer/Boolean)
Note: this must be applied (AO2) to how the scenario can be
solved using the language of the candidates’ choice. (Limited
by spec to VB Python and Java.)
AO2.1b
Band

Max 6 marks

2)

| propose to use Python to create a suitable user interface for Sky Balloon Park. The program would include a GUI (Graphical
User Interface) as it would be the most likely interface for customers to want to make repeat bookings using as they are more
user friendly and intuitive to operate than alternatives (such as CLIs [Command Line Interfaces] which require in-depth
knowledge about computers, unlike GUIs) as they can provide visual elements of the program (e.g. buttons, search bars etc.).
The data structure | would use would be multiple records that make up multiple tables to form a relational database to store
this data as tables made up of records are able to store multiple different data types when storing related data. It is necessary
that the database is relational as we need to reference the passengers and bookings together in the program outside of their
own tables. | suggest using random access when accessing (reading from) files as it is more efficient to read from files than
when using serial access (time when customers would be waiting would be longer). Although it takes longer to write to
random access files as the location of the data must be calculated, this does not affect users as they can just enter their data
and leave without having to wait for the data to be properly saved. | would implement range validation checks to ensure
entered dates (e.g. DOB — First two sections should not exceed 31 and 12 respectively as there are no months with more than
31 days and there are 12 months) have been entered correctly and type checks to ensure data is stored as the correct type
(e.g. names should all be strings). | would use global variables in the program when dealing with data that must be accessed in
different parts of the program (e.g. Accessing passenger info when searching for a specific booking). | would use integer data
types for ages, key fields (primary and foreign keys) and passenger counts and would use strings for all other values other than
dates because strings can contain both numbers and English characters.

Sticky Note

Exemplar of full mark scoring answer:

2. Select and fully justify your proposed programming method of solution for Sky Balloon Park.
You should include references to the main programming constructs you will need to use
including:

e User interface

e Data structures

* File handling

e Validation

* Local and global variables

e Data types [6]

[Only works in Python 3 (Created in 3.4,2)
tkinter comes as part of the standard install - messagebox has to be imported explicitly

from tkinter import =* # import the necessary python modules (all of tkinter and tkinter's messagebox) to provide the GUI
from tkinter import messagebox
def saveCustomer() : # function to save information entered by the user
CustomerIDSave = CustomerIDVar.get() # save the CustomerID to CustomerIDSave...
CustomerIDSave = CustomerIDSave.ljust(5@) # ... and add spaces to fill it to be exactly 5@ characters long so it can be utilised in the table format.

FirstnameSave=FirstnameVar.get() # The same can be said for the following lines of code.
FirstnameSave = FirstnameSave.ljust(50)

SurnameSave = SurnameVar.get()

Sur Sur ljust(5@)
PostcodeSave = PostcodeVar.get()
PostcodeSave = PostcodeSave.ljust(50)
AddressSave = AddressVar.get()

AddressSave = AddressSave.ljust(50)

fileObject = open("Customer.txt","a") # open the 'Customer.txt' file with appending privleges

fileObject.write(CustomerIDSave + First + Sur + Post e + AddressSave + "\n") # append the customer's data to the file
fileObject.close() # close the file
return

def countCustomer() : # function to count information entered by the user where it appears in the file

CustomerCount=0 # Tracks the number of customers that are counted
CountNeeded=0 # stores the amount of matches required for a count to be considered successful

CustomerIDSave = CustomerIDVar.get() # save customer ID to CustomerIDSave so it can be used in the counting process
FirstnameSave=FirstnameVar.get()

SurnameSave = SurnameVar.get()

PostcodeSave = PostcodeVar.get()

AddressSave = AddressVar.get()

i1 not SurnameSave
CountNeeded +=1

if not PostcodeSave =:
CountNeeded +=1

f not AddressSave ==

CountNeeded +=1

if CountNeeded == 0 : # show the user an error if they haven't entered anything
)

messagebox. showerror(“Error”,"Please enter something te count!

"t1leObject=open(“Customer. txt",

") # attempt to open the file...

ot IOError:
messagebox. showerror(“Error”,"No file to rea

)# ... and show an error if this fails.

else: & nun <ounun¢ process
while Truet

CountGot=0 # tracks the amount of count successes that appear in each record of the file

recordVarsfiledbject.readLinel) 4 stores ane record of the file (next tine srownd in the loop it stores the record that sppears after this)

if recor # check if the record stores anything, and if it doesn't, close the program and end the loop.
ﬂ\enbje:t.tles!()
f CustomerIDSave in recordVar(8:50] and not CustomerIDSaves="" : # check if each of the variables entered by the user appear in the file and if they do, mark it as a count success by addi
CountGot +=1
if FirstnameSave in recordvar[50:108] and not FirstnameSaves=="" :
CountGot +=
i1 SurnameSave in recordVar[100:150] and not SurnameSaves="
CountGot +=1
i1 PostcodeSave in recordVar[150:208] and not PostcodeSave
CountGot +

7 AddressSave in recordVar(200:250] and not AddressSaves="
CountGot +=1

if CountGot == CountNeeded: # if the amount of count successes is meets the required amount of count successes defined by the user's query, mark this as a customer that is counted as part of

CustomerCount +=1

messagebox. showinfo("Found: “,str(CustomerCount)) # Show a messagebox to the user stating how many customers met their criteria in the count.

return

def makeWindow(): # this function initialises the tkinter window that is viewed by the user.

global CustomerIDVar, FirstnameVar, SurnameVar, PostcodeVar, AddressVar # state that the aforementioned variables should be global (accessible from anywhere in the program)

4Create a window/form
win = Tk() # create a new tkinter window object called ‘win'

framel=Frame(win) # create frame called framel using ‘win’ as it's basis (framel is a specific portion of ‘win')
frane1.pack()

Label(framel, text="SKY Customers”, font=("Helvetica 12 bold")).grid(row=0, column=e) # Display a piece of text on the GUI stating that the program is intended for SKY Customers.

Label(framel, text="CustomerID").grid(row=1, column=0, sticky=W) # Create another label asking users to input their CustomerID
CustomerIDVar=StringVar() # stores the user's customerl

CustomerID= Entry(framel, textvariable=CustomerIDVar) # creates an entry box for the user to input this value and positions it on the grid accordingly.
CustomerID.grid(row=1, column=1,sticky=w)

Label(framel, text="First name").grid(row=2, column=d, sticky=W) # Create another label asking users to input their First name
FirstnameVar=StringVar()# stores the user's first name

Firstname= Entry(framel, textvariable=FirstnameVar)# creates an entry box for the user to input this value and positions it on the grid accordingly.
Firstname.grid(row=2,column=1, sticky=W)

Label(framel, text="Surname").grid(row=3, (olmln-d, sticky=w) # Create another label asking users to input their Surname
Vu-s:rhvg‘ur() # stores the user's surnam

Sur Entry(framel, textvariable=SurnameVar)# Craates an entry box for the user to input this value and positions it on the grid accordingly.

Surname.grid(row=3, column=1, sticky=h)

Label(framel, text="Postcode”).grid(row=4, column=9, sticky=W) # Create another label asking users to input their Postcode
PostcodeVar=5tringVar()# stores the user's psotcode

Postcode= Entry(framel, textvariable=PostcodeVar)# creates an entry box for the user to input this value and positions it on the grid accordingly.
Postcode.grid(row=4, column=1, sticky=W)

Label(framel, text="Address").grid(row=5, column=6, sticky=w) # Create another label asking users to input their Address
AddressVar=StringVar()# stores the user's address

Address= Entry(framel, textvariable=AddressVar)# creates an entry box for the user to input this value and positions it on the grid accordingly.
Address.grid(row=5,column=1,sticky=w)

frame2 = Fra-elwtn)l create a new frame called frame2 using 'win' as it's basis (frame2 is a specific portion of 'win')
frame2.pack()

bl= Dutlnn(frml, text=" Save
b2= Button(frame2, text=" Count
bl.pack(side=LEFT); b2.pack(sids

command=saveCustomer) # add two buttons to the new frame and make them call the saveCustomer and countCustomer functions when pressed respectively.
+ command=countCustomer)
LEFT)

return win # return the resulting tkinter window object from this function and store it in the variable in which it has been called (show below)

#this is the main program!
win = makeWindow() # Stare tkinter window object produced by makeWindow() function in the 'win' indtifier.
win.mainloop() # continuously wait for user input by looping the program.

Ln:1 Col: 0

Question

Answer

Mark

AO1

AO2

AO3

Total

1.

Award 1 mark for each corrected line of code:

Indicative content:

e Declaration of main program

e Declaration of Save subroutine

e Declaration of count subroutine

o Declaration for data type/structure etc.

3.1b

[Only works in Python 3 (Created in 3.4,2)
tkinter comes as part of the standard install - messagebox has to be imported explicitly

from tkinter import =* # import the necessary python modules (all of tkinter and tkinter's messagebox) to provide the GUI
from tkinter import messagebox
def saveCustomer() : # function to save information entered by the user
CustomerIDSave = CustomerIDVar.get() # save the CustomerID to CustomerIDSave...
CustomerIDSave = CustomerIDSave.ljust(5@) # ... and add spaces to fill it to be exactly 5@ characters long so it can be utilised in the table format.

FirstnameSave=FirstnameVar.get() # The same can be said for the following lines of code.
FirstnameSave = FirstnameSave.ljust(50)

SurnameSave = SurnameVar.get()

Sur Sur ljust(5@)
PostcodeSave = PostcodeVar.get()
PostcodeSave = PostcodeSave.ljust(50)
AddressSave = AddressVar.get()

AddressSave = AddressSave.ljust(50)

fileObject = open("Customer.txt","a") # open the 'Customer.’ .. " ile with appending privleges
fileObject.write(CustomerIDSave + First + Sur + Post e + AddressSave + "\n") # append the customer's data to the file
fileObject.close() # close the file
return
def countCustomer() : # function to count information entered by the user where it appears in the file

CustomerCount=0 # Tracks the number of customers that are counted
CountNeeded=0 # stores the amount of matches required for a count to be considered successful

CustomerIDSave = CustomerIDVar.get() # save customer ID to CustomerIDSave so it can be used in the counting process
FirstnameSave=FirstnameVar.get()

SurnameSave = SurnameVar.get()

PostcodeSave = PostcodeVar.get()

AddressSave = AddressVar.get()

i1 not SurnameSave
CountNeeded +=1

if not PostcodeSave =:
CountNeeded +=1

f not AddressSave ==

CountNeeded +=1

if CountNeeded == 0 : # show the user an error if they haven't entered anything
)

messagebox. showerror(“Error”,"Please enter something te count!

"t1leObject=open(“Customer. txt",

") # attempt to open the file...

ot IOError:
messagebox. showerror(“Error”,"No file to rea

)# ... and show an error if this fails.

else: & nun <ounun¢ process
while Truet

CountGot=0 # tracks the amount of count successes that appear in each record of the file

recordVarsfiledbject.readLinel) 4 stores ane record of the file (next tine srownd in the loop it stores the record that sppears after this)

if recor # check if the record stores anything, and if it doesn't, close the program and end the loop.
ﬂ\enbje:t.tles!()
f CustomerIDSave in recordVar(8:50] and not CustomerIDSaves="" : # check if each of the variables entered by the user appear in the file and if they do, mark it as a count success by addi
CountGot +=1
if FirstnameSave in recordvar[50:108] and not FirstnameSaves=="" :
CountGot +=
i1 SurnameSave in recordVar[100:150] and not SurnameSaves="
CountGot +=1
i1 PostcodeSave in recordVar[150:208] and not PostcodeSave
CountGot +

7 AddressSave in recordVar(200:250] and not AddressSaves="
CountGot +=1

if CountGot == CountNeeded: # if the amount of count successes is meets the required amount of count successes defined by the user's query, mark this as a customer that is counted as part of

CustomerCount +=1

messagebox. showinfo("Found: “,str(CustomerCount)) # Show a messagebox to the user stating how many customers met their criteria in the count.

return

def makeWindow(): # this function initialises the tkinter window that is viewed by the user.

global CustomerIDVar, FirstnameVar, SurnameVar, PostcodeVar, AddressVar # state that the aforementioned variables should be global (accessible from anywhere in the program)

4Create a window/form
win = Tk() # create a new tkinter window object called ‘win'

framel=Frame(win) # create frame called framel using ‘win’ as it's basis (framel is a specific portion of ‘win')
frane1.pack()

Label(framel, text="SKY Customers”, font=("Helvetica 12 bold")).grid(row=0, column=e) # Display a piece of text on the GUI stating that the program is intended for SKY Customers.

Label(framel, text="CustomerID").grid(row=1, column=0, sticky=W) # Create another label asking users to input their CustomerID
CustomerIDVar=StringVar() # stores the user's customerl

CustomerID= Entry(framel, textvariable=CustomerIDVar) # creates an entry box for the user to input this value and positions it on the grid accordingly.
CustomerID.grid(row=1, column=1,sticky=w)

Label(framel, text="First name").grid(row=2, column=d, sticky=W) # Create another label asking users to input their First name
FirstnameVar=StringVar()# stores the user's first name

Firstname= Entry(framel, textvariable=FirstnameVar)# creates an entry box for the user to input this value and positions it on the grid accordingly.
Firstname.grid(row=2,column=1, sticky=W)

Label(framel, text="Surname").grid(row=3, (olmln-d, sticky=w) # Create another label asking users to input their Surname
Vu-s:rhvg‘ur() # stores the user's surnam

Sur Entry(framel, textvariable=SurnameVar)# Craates an entry box for the user to input this value and positions it on the grid accordingly.

Surname.grid(row=3, column=1, sticky=h)

Label(framel, text="Postcode”).grid(row=4, column=9, sticky=W) # Create another label asking users to input their Postcode
PostcodeVar=5tringVar()# stores the user's psotcode

Postcode= Entry(framel, textvariable=PostcodeVar)# creates an entry box for the user to input this value and positions it on the grid accordingly.
Postcode.grid(row=4, column=1, sticky=W)

Label(framel, text="Address").grid(row=5, column=6, sticky=w) # Create another label asking users to input their Address
AddressVar=StringVar()# stores the user's address

Address= Entry(framel, textvariable=AddressVar)# creates an entry box for the user to input this value and positions it on the grid accordingly.
Address.grid(row=5,column=1,sticky=w)

frame2 = Fra-elwtn)l create a new frame called frame2 using 'win' as it's basis (frame2 is a specific portion of 'win')
frame2.pack()

bl= Dutlnn(frml, text=" Save
b2= Button(frame2, text=" Count
bl.pack(side=LEFT); b2.pack(sids

command=saveCustomer) # add two buttons to the new frame and make them call the saveCustomer and countCustomer functions when pressed respectively.
+ command=countCustomer)
LEFT)

return win # return the resulting tkinter window object from this function and store it in the variable in which it has been called (show below)

#this is the main program!
win = makeWindow() # Stare tkinter window object produced by makeWindow() function in the 'win' indtifier.
win.mainloop() # continuously wait for user input by looping the program.

Ln:1 Col: 0

Sticky Note

The Trips database storing details program was well annotated and the code was fully functional.

The level of annotation provided by the candidate was exemplary and shows a deep understanding of programming file handling at AS.

This was awarded full marks.

Blll Python

Sky Balloon Park wants a prototype computer system to be developed using Python.

1. Open the file skycustomers
* Read the code and familiarise yourself with its contents.
e The file contains incomplete code which attempts to save customer details and return
the number of customers on file that match the search criteria entered.

Complete this code.

Save the changes made to the file. [4]

tkinter = #
an tkinter import messagebox

import necessary modules for program to work.

window = Tk{ create a tkinter window object called 'window’
window. utle(Sky Balloon Park Dashboard")

begin validation checks and variable declarations
lD tripIbvar.get() # make sure ID is an integer

lessagenux showerror(“Error”, “Please only enter integers for the Trip I

date'= datevar.get() # obtain variables to write to file from user's input to program
time = timeVar.get()
sc =

desc = descArea.get(9.9, END)

(len(str(ID)) > 58 or len(date) > 50

or len{time) >58 or len(desc)>50
messagebox. showerror (“Error”,

Please use no mere than 50 characters

End Validation Checks and vafiable declarations

saveFunction():# this function obtains the values of the different user inputs from the program and saves them to a file called SBPTable.txt

D.") # throw an error if it is not and cease the function.

check if values entered exceed the field size limi
each field.") # if they do, throw an error and end the function

textToWrite = (str(ID) \Jususll) + (date.ljust(58)) + (time.ljust(50)) + (desc.ljust(58)) # stores information that will be witten to file
file = open("SBPTable.txt",

open file to write to with appending permissions
file.write{textToWrite) # Bppend data to file
file.close()# close file

messagebox. showinfo("Success! ",

def loadFunction():
file = open("SBPTable, txt", *
messagebox. showerror (“Error”, *

"File not available to read from - no data has been saved to the system.”) # ...

des(Aru delete(0.0, END) # clear description area to be used to display data loaded from f1

"Data has been successfully stored to the system.”) # tell user they have successfully stored the data.

) # check if table exists and if not, prevent user from carrying out the remanider of the function

throwing them an error in the process.

g - Cora, bach. rRcorl Th. & LAGHeaU SASGFL 1 in Tie auecription ared dead brask: St v L raschas-un ampty:record)
recordvar = file readline()

recordvar =
descArea. insert(END, recordVar)
descArea, insert(END, "\n")

titleLabel = Label(window, te:

xt="Sky Ballon Park Systen") # create a label stating what the program does and position it on the grid accordingly
titleLabel.grid(row=a, column=8, sticky=W)

tripIDLabel = Label(window, text="Trip ID:")# create a label sasking for the Trip ID and position it on the grid accordingly
tripIDLabel.grid(row=1, column=8, sticky=W)
tripIbVar = IntVar() # create a tkinter intvar called tripIDVar which stores the Trip ID

tripIDEntry = Entry(window, textvariable=tripIDVar) # create an area for the user to enter the Trip ID
tripIDEntry.grid(rows1, column=1, sticky=W)

dateLabel = Label(window, texts'Date
dateLabel.grid{row=2, column=d, sticky=n)

datevar = Stringvar() # create a tkinter stringvar called datevar which stores the trip date
dateEntry = Entry(window, textvariable=dateVar)

dateEntry.grid(row=2, column=1, sticky=w)

titlelabel = Label(window, tex

Sky Ballon Park Systen") # create a label stating what the program does and position it on the grid accordingly
titlelabel.grid(row=8, column=e, sticky=W)

tripIbLabel = Label(window, text="Trip I0:")# create a label sasking for the Trip ID and position it on the grid accordingly
tripIbLabel.grid(row=1, column=a, sticky=W)

tripIbvar = Intvar() # create a tkinter intvar called tripIDVar which stores the Trip ID

tripIDEntry = Entry(window, textvariablestripIDVar) # create an area for the user to enter the Trip ID
tripIDEntry.grid(row=1, column=1, sticky=W)

dateLabel = Label(window, text="Date:")
dateLabel.grid{row=2, column=d, sticky=W)
datevar = StringVar() # create a tkinter stringvar called dateVar which stores the trip date
dateEntry = Entry(window, textvariable=dateVar)

dateEntry.grid{row=2, column=1, sticky=n)

timeLabel = Label(window, text="Time
timeLabel.grid(row=3, column=0, sticky=w)
timeVar = StringVar()
timeEntry = Entry(window, textvariable=timevar)
timeEntry.grid(row=3, column=1, sticky=w|

descLabel = Label(window, text="Description / Stored Values:
descLabel.grid(row=4, 1cky=W)
descArea =

Text(window, height=10, width=48, wrap=WORD, bg='grey') # create a text area where the description of a trip is written AND where text is displayed when it is loaded from the SBPTable.txt fil
descArea.grid(row=5, columnspan=3, sticky=w)

saveButton = Button(window, command=saveFunction, text="Save") # create & button and position it on the grid that calls the saveFunction function when clicked
saveButton.grid{row=6, column=8, sticky=W)

loadButton =

Button(window, command=loadFunction, text="Load") # create a button and position it on the grid that calls the loadFunction function when clicked.
loadButton.grid(row=6, column=1, sticky=W)

window.magnloop() # continuously loop the program looking for user input

3. Award 1 mark for each functional aspect of code from 8 3.1b 8
bullets below.

Indicative content:
e New program exists and can be run
Includes:
o TriplD
Date
Time (AM/PM)
Description
Save Button/function exists
Load/recall Button/option exists
sable/clear Ul (GUI or CLI)

C OO0 OO0 O

tkinter = #
an tkinter import messagebox

import necessary modules for program to work.

window = Tk{ create a tkinter window object called 'window’
window. utle(Sky Balloon Park Dashboard")

begin validation checks and variable declarations
lD tripIbvar.get() # make sure ID is an integer

lessagenux showerror(“Error”, “Please only enter integers for the Trip I

date'= datevar.get() # obtain variables to write to file from user's input to program
time = timeVar.get()
sc =

desc = descArea.get(9.9, END)

(len(str(ID)) > 58 or len(date) > 50

or len{time) >58 or len(desc)>50
messagebox. showerror (“Error”,

Please use no mere than 50 characters

End Validation Checks and vafiable declarations

saveFunction():# this function obtains the values of the different user inputs from the program and saves them to a file called SBPTable.txt

D.") # throw an error if it is not and cease the function.

check if values entered exceed the field size limi
each field.") # if they do, throw an error and end the function

textToWrite = (str(ID) \Jususll) + (date.ljust(58)) + (time.ljust(50)) + (desc.ljust(58)) # stores information that will be witten to file
file = open("SBPTable.txt",

open file to write to with appending permissions
file.write{textToWrite) # Bppend data to file
file.close()# close file

messagebox. showinfo("Success! ",

def loadFunction():
file = open("SBPTable, txt", *
messagebox. showerror (“Error”, *

"File not available to read from - no data has been saved to the system.”) # ...

des(Aru delete(0.0, END) # clear description area to be used to display data loaded from f1

"Data has been successfully stored to the system.”) # tell user they have successfully stored the data.

) # check if table exists and if not, prevent user from carrying out the remanider of the function

throwing them an error in the process.

g - Cora, bach. rRcorl Th. & LAGHeaU SASGFL 1 in Tie auecription ared dead brask: St v L raschas-un ampty:record)
recordvar = file readline()

recordvar =
descArea. insert(END, recordVar)
descArea, insert(END, "\n")

titleLabel = Label(window, te:

xt="Sky Ballon Park Systen") # create a label stating what the program does and position it on the grid accordingly
titleLabel.grid(row=a, column=8, sticky=W)

tripIDLabel = Label(window, text="Trip ID:")# create a label sasking for the Trip ID and position it on the grid accordingly
tripIDLabel.grid(row=1, column=8, sticky=W)
tripIbVar = IntVar() # create a tkinter intvar called tripIDVar which stores the Trip ID

tripIDEntry = Entry(window, textvariable=tripIDVar) # create an area for the user to enter the Trip ID
tripIDEntry.grid(rows1, column=1, sticky=W)

dateLabel = Label(window, texts'Date
dateLabel.grid{row=2, column=d, sticky=n)

datevar = Stringvar() # create a tkinter stringvar called datevar which stores the trip date
dateEntry = Entry(window, textvariable=dateVar)

dateEntry.grid(row=2, column=1, sticky=w)

titlelabel = Label(window, tex

Sky Ballon Park Systen") # create a label stating what the program does and position it on the grid accordingly
titlelabel.grid(row=8, column=e, sticky=W)

tripIbLabel = Label(window, text="Trip I0:")# create a label sasking for the Trip ID and position it on the grid accordingly
tripIbLabel.grid(row=1, column=a, sticky=W)

tripIbvar = Intvar() # create a tkinter intvar called tripIDVar which stores the Trip ID

tripIDEntry = Entry(window, textvariablestripIDVar) # create an area for the user to enter the Trip ID
tripIDEntry.grid(row=1, column=1, sticky=W)

dateLabel = Label(window, text="Date:")
dateLabel.grid{row=2, column=d, sticky=W)
datevar = StringVar() # create a tkinter stringvar called dateVar which stores the trip date
dateEntry = Entry(window, textvariable=dateVar)

dateEntry.grid{row=2, column=1, sticky=n)

timeLabel = Label(window, text="Time
timeLabel.grid(row=3, column=0, sticky=w)
timeVar = StringVar()
timeEntry = Entry(window, textvariable=timevar)
timeEntry.grid(row=3, column=1, sticky=w|

descLabel = Label(window, text="Description / Stored Values:
descLabel.grid(row=4, 1cky=W)
descArea =

Text(window, height=10, width=48, wrap=WORD, bg='grey') # create a text area where the description of a trip is written AND where text is displayed when it is loaded from the SBPTable.txt fil
descArea.grid(row=5, columnspan=3, sticky=w)

saveButton = Button(window, command=saveFunction, text="Save") # create & button and position it on the grid that calls the saveFunction function when clicked
saveButton.grid{row=6, column=8, sticky=W)

loadButton =

Button(window, command=loadFunction, text="Load") # create a button and position it on the grid that calls the loadFunction function when clicked.
loadButton.grid(row=6, column=1, sticky=W)

window.magnloop() # continuously loop the program looking for user input

Sticky Note

The fixing code question was also very well attempted gaining full marks with annotation showing a depth of understanding and ability.

Create a new program to allow Sky Balloon Park to record details about upcoming trips.

The new program must accept:

o TriplD

o Date

o Time

o Description

The program should have a Save facility and a Load facility.

Save the new program as Trips. [8]

